Rapid prediction of insulating gas performance: Leveraging XTB calculations for high-throughput screening of SF₆ alternatives

Authors

  • P. Liu State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi Province, People’s Republic of China
  • W. Cao State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi Province, People’s Republic of China
  • Y. Yao State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi Province, People’s Republic of China
  • B. Zhang State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi Province, People’s Republic of China
  • X. Li State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi Province, People’s Republic of China

DOI:

https://doi.org/10.14311/ppt.2025.2.152

Keywords:

Insulating Gas, xTB Semi-Empirical Method, High-throughput screening, Dielectric strength

Abstract

Addressing the environmental challenge posed by sulfur hexafluoride (SF6) due to its extremely high Global Warming Potential (GWP), the development of eco-friendly alternative gases is imperative. Efficient prediction of key gas properties is crucial for virtual screening and generative model optimization, but traditional quantum chemical calculations for molecular descriptors are time-consuming for high-throughput screening. This study proposes and validates a rapid modeling framework using XTB semi-empirical quantum chemical calculations to efficiently compute physicochemical parameters, which provide the basis for core gas properties such as dielectric strength, boiling point, and GWP. Testing confirms the XTB method offers both high speed and acceptable accuracy, which establishes a foundation for virtual screening, accelerating the discovery of environmentally benign insulating gases.

References

C. T. Dervos and P. Vassiliou. Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation. Journal of the Air & Waste Management Association, 50(1):137–141, 2000. doi:10.1080/10473289.2000.10463996.

A. Xiao, J. G. Owens, J. Bonk, et al. Environmentally friendly insulating gases as SF6 alternatives for power utilities. In 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), pages 42–48. IEEE, 2019. doi:10.1109/ICEMPE.2019.8727308.

V. Masson-Delmotte et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1):2391, 2021. arXiv:https://www.ipcc.ch/report/ar6/wg1/.

J. G. Owens. Greenhouse gas emission reductions through use of a sustainable alternative to SF6. In 2016 IEEE Electrical Insulation Conference (EIC), pages 535–538. IEEE, 2016. doi:10.1109/EIC.2016.7548658.

M. Hyrenbach and S. Zache. Alternative insulation gas for medium-voltage switchgear. In 2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), pages 1–9. IEEE, 2016. doi:10.1109/PCICEurope.2016.7604648.

Y. Kieffel, F. Biquez, D. Vigouroux, et al. Characteristics of g3–an alternative to SF6. CIRED 24, 2017(1):54–57, 2017. doi:10.1109/ICD.2016.7547757.

X. Li, D. Sun, Y. Zhou, et al. Virtual screening of new high voltage insulating gases as potential candidates for SF6 replacement. In Frontier Academic Forum of Electrical Engineering, pages 739–752. Springer, 2022. doi:10.1007/978-981-99-3408-9_64.

H. Sun, L. Liang, C. Wang, et al. Prediction of the electrical strength and boiling temperature of the substitutes for greenhouse gas SF6 using neural network and random forest. IEEE Access, 8:124204–124216, 2020. doi:10.1109/ACCESS.2020.3004519.

L. Luo, S. Yang, Z. Yang, et al. A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method. Journal of Molecular Modeling, 31(2):53, 2025. doi:10.1007/s00894-024-06254-y.

S. Grimme, C. Bannwarth, and P. Shushkov. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (z = 1 − −86). Journal of chemical theory and computation, 13(5):1989–2009, 2017. doi:10.1021/acs.jctc.7b00118.

L. Wilbraham, E. Berardo, L. Turcani, et al. High-throughput screening approach for the optoelectronic properties of conjugated polymers. Journal of chemical information and modeling, 58(12):2450–2459, 2018. doi:10.1021/acs.jcim.8b00256.

M. O. Faruque, S. Akter, D. K. Limbu, et al. High-throughput screening, crystal structure prediction, and carrier mobility calculations of organic molecular semiconductors as hole transport layer materials in perovskite solar cells. Crystal Growth & Design, 24(21):8950–8960, 2024. doi:10.1021/acs.cgd.4c00965.

S. Raaijmakers, M. Pols, J. M. Vicent-Luna, and S. Tao. Refined GFN1-xTB parameters for engineering phase-stable CsPbX3 perovskites. The Journal of Physical Chemistry C, 126(22):9587–9596, 2022. doi:10.1021/acs.jpcc.2c02412.

P. Wróbel and A. Eilmes. Effects of Me–solvent interactions on the structure and infrared spectra of MeTFSI (Me= Li, Na) solutions in carbonate solvents—a test of the GFN2-xTB approach in molecular dynamics simulations. Molecules, 28(18):6736, 2023. doi:10.3390/molecules28186736.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian~16 Revision B.01, 2016. https://gaussian.com/gaussian16/.

T. Lu and F. Chen. Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5):580–592, 2012.

doi:10.1002/jcc.22885.

T. Lu. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. The Journal of chemical physics, 161(8), 2024. doi:10.1063/5.0216272.

C. Bannwarth, E. Caldeweyher, S. Ehlert, et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci., 11:e01493, 2020. doi:10.1002/wcms.1493.

N. Erickson, J. Mueller, A. Shirkov, et al. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505, 2020. doi:10.48550/arXiv.2003.06505.

A. Beroual and A. Haddad. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies, 10(8):1216, 2017. doi:10.3390/en10081216.

H. Hou and B. Wang. Group additivity theoretical model for the prediction of dielectric strengths of the alternative gases to SF6. Chemical Journal of Chinese Universities, 42(12):3709–3715, 2021. doi:10.7503/cjcu20210495.

Downloads

Published

2025-09-10

Issue

Section

Articles