Study of the behavior of an electric arc during the passage of an 8/20 µs impulse current and a follow current in a spark gap

Authors

  • O. M. S. Razafindrasata Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 – 31062 Toulouse cedex 9, France
  • P. Freton Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 – 31062 Toulouse cedex 9, France
  • J.J. Gonzalez Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 – 31062 Toulouse cedex 9, France
  • C. D. Pham Département R&D, CITEL, 3 impasse de la blanchisserie, 51100 REIMS, France
  • V. Crevenat Département R&D, CITEL, 3 impasse de la blanchisserie, 51100 REIMS, France
  • Y. Gannac Département R&D, CITEL, 3 impasse de la blanchisserie, 51100 REIMS, France

DOI:

https://doi.org/10.14311/ppt.2025.3.226

Keywords:

arc simulation, spark gap, impulse current

Abstract

The technologies of spark gaps involve two distinct types of current: an impulse current that simulates a lightning strike and a follow current resulting from the persistence of the arc after the impulse. This study shows the behavior of the electric arc with 8/20 µs impulse current followed by a 200 A follow current, using both experiments and numerical tools. The geometry includes a pre-chamber, a main chamber (without separators), and an open outlet. We developed a three-dimensional (3D) numerical model to simulate the arc movement. This model is based on the assumption of local thermodynamic equilibrium (LTE) and operates under unsteady conditions. In our experiments, we use high-speed camera recordings and electrical measurements. A good agreement is observed between the numerical model and the experimental measurements, both in terms of arc shape and arc voltage values.

References

G. Finis, M. Wetter, and T. Meyer. New spark-gap technology with efficient line-follow current suppression for the protection of powerful LV distribution systems. Surge Protection D-32825 Blomberg, Germany, 2016. doi:10.1109/ICLP.2016.7791513.

S. Ait-Amar, J. B. Ducourneau, and G. Serrie. Arc extinguishing method of SPD type 1. IEEE Transactions on Dielectrics and Electrical Insulation, 16(3), 2009. doi:10.1109/TDEI.2009.5128510.

Y. Gannac, G. Leduc, C. D. Pham, and V. Crevenat. 8/20 and 10/350 surges behaviour of a gas discharge tube according to gas pressure. Electric Power Systems Research, 2021. doi:10.1016/j.epsr.2021.107302.

A. Ehrhardt, S. Schreiter, and L. Huttner. Basic problems and solution of the encapsulation of a low–voltage spark gap with arc splitter chamber. Journal of Electrical Engineering, 63(2):103–108, 2012. doi:10.2478/v10187-012-0015-9.

A. Ehrhardt and S. Beier. New deion chamber for encapsulated switchgear. In ICEC, The 27th International Conference on Electrical Contacts, 2014.

A. Ehrhardt and O. Schneider. Surge protection device digital prototyping. In ICEC 2020 – 30th International Conference on Electrical Contacts, 2020.

I. 61643-11:. Low-voltage surge protective devices - Part 11: Surge protective devices connected to AC low-voltage power systems - Requirements and test methods, 2025.

O. Schneider, D. Gonzalez, and A. Ehrhardt. Multiphysical simulation of impulse current arcs in spark gaps for industrial applications. Plasma Physics and Technology, 10(3):119–122, 2023. doi:10.14311/ppt.2023.3.119.

ANSYS. Ansys Fluent Theory Guide Release 2023 R2.

P. Freton, J. J. Gonzalez, M. Masquere, and F. Reichert. Magnetic field approaches in DC thermal plasma modelling. J. Phys. D: Appl. Phys., 44:345202, 2011. doi:10.1088/0022-3727/44/34/345202.

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes. Net emission coefficient of air thermal plasmas. J. Phys. D: Appl. Phys., 35:2925, 2002. doi:10.1088/0022-3727/35/22/306.

A. Mutzke, T. Rüther, M. Lindmayer, and M. Kurrat. Arc behavior in low-voltage arc chambers. EPJ Appl. Phys., 49(2), 2010. doi:10.1051/epjap/2010001.

X. Li, D. Chen, Q. Wang, and Z. Li. Simulation of the effect of several factors on arc behavior in low voltage circuit breaker. Plasma Sci & Technol, 2005. doi:10.1088/1009-0630/7/5/022.

B. Swierczynski, J. J. Gonzalez, P. Teulet, et al. Advances in low-voltage circuit breaker modelling. J Phys D, 37(4):595, 2004. doi:10.1088/0022-3727/37/4/011.

X. Li. Study of the effect of gassing material on arc behavior in low voltage circuit breaker. IEICE TRANS. ELECTRON., E90–C(7), 2007. doi:10.1093/ietele/e90-c.7.1460.

F. Yang, M. Rong, Y. Wu, et al. Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker. J. Phys. D: Appl. Phys., 43:434011, 2010. doi:10.1088/0022-3727/43/43/434011.

J. J. Lowke and M. Tanaka. LTE-diffusion approximation for arc calculations. J. Phys. D: Appl. Phys, 39(16):3634, 2006. doi:10.1088/0022-3727/39/16/017.

Downloads

Published

2025-12-30

Issue

Section

Articles