Optical emission spectroscopy evaluation of exhaust gas temperatures after high current interruption in CO2/O2

Authors

  • J. Engelbrecht Hitachi Energy Research, 5405 Baden-Dättwil, Switzerland https://orcid.org/0000-0002-9832-4833
  • A. Frank Hitachi Energy Research, 5405 Baden-Dättwil, Switzerland
  • P. Pietrzak Hitachi Energy Research, 5405 Baden-Dättwil, Switzerland

DOI:

https://doi.org/10.14311/ppt.2025.2.158

Keywords:

high voltage circuit breaker, SF6 alternatives, optical emission spectroscopy, CuF

Abstract

In high voltage gas circuit breakers, the pressure buildup necessary for arc extinguishing is partially generated by ablated PTFE nozzle material, which mixes with the insulating gas before being blown through the arcing zone during current interruption. When high short-circuit currents are interrupted, this mixture can retain elevated temperatures for milliseconds as it expands into the circuit breaker’s exhaust volume, and therefore needs to be effectively managed to ensure adequate insulation is maintained. From a circuit breaker design standpoint, this makes accurate knowledge of the exhaust temperature immediately after current zero essential. In this work, two optical emission spectroscopy based temperature determination methods were applied to study the temperature near the exhaust plane exit in a CO2/O2-filled model circuit breaker near current zero. The measured broadband spectra show strong continuum emission from soot particles, in addition to band emission from CuF molecules formed in the exhaust gas. Gray-body spectral fits were performed to estimate temperatures from the continuum emission, which is dominated by the high emissivity soot particles, while temperatures were also obtained via Boltzmann plot evaluation of the emission band intensity ratios. The two methods reveal a temperature mismatch that may suggest slower cooling of the larger soot particles in comparison to the rest of the exhaust gas mixture. 

References

M. Seeger, R. Smeets, J. Yan, et al. Recent Trends in Development of High Voltage Circuit Breakers with SF6 Alternative Gases. Plasma Physics and Technology Journal, 4:8–12, 01 2017. doi:10.14311/ppt.2017.1.8.

K. Soni, M. Seeger, and M. Schwinne. Study of exhaust gas temperature in a prototype CO2/C4-FN/O2 circuit breaker using pyrometry. IET Conference Proceedings, 2023, 12 2023. doi:10.1049/icp.2024.0480.

M. Seeger, T. Votteler, S. Pancheshnyi, et al. Breakdown in CO2/O2 and CO2/O2/C2F4 mixtures at elevated temperatures in the range 1000–4000K. Plasma Physics and Technology, 6:39–42, 07 2019. doi:10.14311/ppt.2019.1.39.

Y. Hayashi, M. Watanabe, A. Okino, and E. Hotta. Dynamics of exhaust gas generated by arc extinction. Journal of Applied Physics, 90(10):4966–4972, 11 2001. doi:10.1063/1.1412276.

Y. Tanaka, R. D. Smirnov, A. Y. Pigarov, and M. Rosenberg. Influence of emissivity on behavior of metallic dust particles in plasmas. Physics of Plasmas, 15(7):073704, 07 2008. doi:10.1063/1.2946435.

F. Goulay, P. Schrader, and H. Michelsen. Effect of wavelength dependent emissivity on inferred soot temperatures measured by spectrally resolved laser induced incandescence. Applied Physics B: Lasers and Optics, 100:655–663, 09 2010. doi:10.1007/s00340-010-4119-2.

S. Chippett and W. Gray. The size and optical properties of soot particles. Combustion and Flame, 31:149–159, 1978. doi:10.1016/0010-2180(78)90125-6.

R. E. Steele and H. P. Broida. Chemiluminescence and photoluminescence of CuF. The Journal of Chemical Physics, 69(6):2300–2305, 09 1978. doi:10.1063/1.436939.

F. Ahmed, R. F. Barrow, A. H. Chojnicki, et al. Electronic states of the CuF molecule. I. analysis of rotational structure. Journal of Physics B: Atomic and Molecular Physics, 15(21):3801, nov 1982. doi:10.1088/0022-3700/15/21/006.

C. Dufour, J. Schamps, and R. F. Barrow. Electronic states of the CuF molecule. II. nature of the observed states. Journal of Physics B: Atomic and Molecular Physics, 15(21):3819, nov 1982. doi:10.1088/0022-3700/15/21/007.

J. Delaval and J. Schamps. Ab initio computation of radiative lifetimes of the valence electronic states of CuF. Chemical Physics, 100(1):21–32, 1985. doi:10.1016/0301-0104(85)87020-8.

J. Schamps, J. Delaval, and O. Faucher. A calculation of radiative lifetimes of electronically excited rovibronic levels of CuF. Chemical Physics, 145(1):101–110, 1990. doi:10.1016/0301-0104(90)80121-D.

D. S. Talaga and J. I. Zink. Copper fluoride luminescence during UV photofragmentation of Cu(hfac)2 in the gas phase. Inorganic chemistry, 35 17:5050–5054, 1996. doi:10.1021/ic9515362.

R. Methling, N. Götte, and D. Uhrlandt. Ablation-dominated arcs in CO2 atmosphere—part II: Molecule emission and absorption. Energies, 13(18), 2020. doi:10.3390/en13184720.

J. T. Engelbrecht, D. Kumari, and C. M. Franck. Optical characterization of actively cooled switching arcs in SF6 alternatives. Journal of Physics D: Applied Physics, 58(10):105210, jan 2025. doi:10.1088/1361-6463/ada450.

J. T. Engelbrecht, S. Gortschakow, R. Methling, et al. Study of transient arc properties near current zero in an experimental CO2 high-voltage circuit breaker. Journal of Physics D: Applied Physics, 58(15):155207, mar 2025. doi:10.1088/1361-6463/adbb00.

Downloads

Published

2025-09-10

Issue

Section

Articles