Multi-temperature thermophysical properties and quenching characteristics of arc plasmas in SF6 and its alternative

Authors

  • G. Wang State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
  • B. Zhang State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
  • J. Deng State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
  • M. Cao State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
  • X. Li State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China

DOI:

https://doi.org/10.14311/ppt.2025.2.164

Keywords:

SF6, C4F7N, arc, non-equilibrium plasma, thermophysical properties, MHD

Abstract

Gaseous switching arc plasmas near current zero typically deviate from LTE and are often modeled using a two-temperature approach. However, in non-equilibrium plasmas, different energy states may follow separate Boltzmann distributions, each with distinct temperatures. This study calculates the thermophysical properties of SF6 and C4F7N arc plasmas by explicitly considering translational, rotational, vibrational, and electronic excitation temperatures. The results reveal that compared to the conventional two-temperature model (distinguishing heavy species and electrons), the multi-temperature framework leads to measurable changes in plasma properties. The C4F7N mixture is more sensitive to multi-temperature effects than SF6. Additionally, the two-temperature simulation model may slightly underestimate the plasma’s non-equilibrium degree. 

References

A. B. Murphy and E. Tam. Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. J. Phys. D Appl. Phys., 47(29):295202, 2014. doi:10.1088/0022-3727/47/29/295202.

V. R. T. Narayanan, M. Gnybida, and C. Rümpler. Transport and radiation properties of C4F7N-CO2 gas mixtures with added oxygen. J. Phys. D Appl. Phys., 55(29):295502, 2022. doi:10.1088/1361-6463/ac6af5.

J. Annaloro, P. Teulet, A. Bultel, et al. Non-uniqueness of the multi-temperature law of mass action. Application to 2T plasma composition calculation by means of a collisional-radiative model. Eur. Phys. J. D, 71(342):1–14, 2017. doi:10.1140/epjd/e2017-80284-5.

V. Colombo, E. Ghedini, and P. Sanibondi. Two-temperature thermodynamic and transport properties of carbon–oxygen plasmas. Plasma Sources Sci. T., 20(3):035003, 2011. doi:10.1088/0963-0252/20/3/035003.

W. Wang, J. D. Yan, M. Rong, et al. Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J. Phys. D Appl. Phys., 46(6):065203, 2013. doi:10.1088/0022-3727/46/6/065203.

X. Li, H. Zhao, and A. B. Murphy. SF6-alternative gases for application in gas-insulated switchgear. J. Phys. D Appl. Phys., 51(15):153001, 2018. doi:10.1088/1361-6463/aab314.

P. Pietrzak, J. T. Engelbrecht, D. Kumari, and C. M. Franck. Short-line fault interruption performance comparison of SF6 alternatives. IEEE Trans. Power Delivery, 39(6):3071–3081, 2024. doi:10.1109/TPWRD.2024.3451178.

G. Wang, B. Zhang, M. Cao, et al. Two-temperature thermodynamic and transport properties of C4F7N-CO2-O2 mixture as an arc-extinguishing gas. J. Phys. D Appl. Phys., 58(16):165502, 2025. doi:10.1088/1361-6463/adbcbd.

X. Baumann, P. Teulet, Y. Cressault, and A. Bultel. Study on reaction rates for 2T SF6 plasma: application to chemical kinetics of a decaying arc in high voltage circuit breakers. J. Phys. Conf. Ser., 1243:012007, 2019. doi:10.1088/1742-6596/1243/1/012007.

P. André, M. Abbaoui, A. Augeard, et al. Study of condensed phases, of vaporization temperatures of aluminum oxide and aluminum, of sublimation temperature of aluminum nitride and composition in an air aluminum plasma. Plasma Chem. Plasma Process, 36:1161–1175, 2016. doi:10.1007/s11090-016-9704-7.

Y. Cressault, P. Teulet, X. Baumann, and A. Gleizes. Non-equilibrium phenomena in thermal plasmas. Plasma Res. Express, 2(4):043001, 2020. doi:10.1088/2516-1067/abc1b9.

X. Baumann, P. Teulet, Y. Cressault, and A. Bultel. Radiative properties and numerical modeling of C4F7N-CO2 thermal plasma. Plasma Phys. Technol., 6(2):144–147, 2019. doi:10.14311/ppt.2019.2.144.

W. Wang, M. Rong, Y. Wu, et al. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas. Phys. Plasmas, 19(8):083506, 2012. doi:10.1063/1.4739778.

Downloads

Published

2025-09-10

Issue

Section

Articles