Multi-temperature thermophysical properties and quenching characteristics of arc plasmas in SF6 and its alternative
DOI:
https://doi.org/10.14311/ppt.2025.2.164Keywords:
SF6, C4F7N, arc, non-equilibrium plasma, thermophysical properties, MHDAbstract
Gaseous switching arc plasmas near current zero typically deviate from LTE and are often modeled using a two-temperature approach. However, in non-equilibrium plasmas, different energy states may follow separate Boltzmann distributions, each with distinct temperatures. This study calculates the thermophysical properties of SF6 and C4F7N arc plasmas by explicitly considering translational, rotational, vibrational, and electronic excitation temperatures. The results reveal that compared to the conventional two-temperature model (distinguishing heavy species and electrons), the multi-temperature framework leads to measurable changes in plasma properties. The C4F7N mixture is more sensitive to multi-temperature effects than SF6. Additionally, the two-temperature simulation model may slightly underestimate the plasma’s non-equilibrium degree.
References
A. B. Murphy and E. Tam. Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. J. Phys. D Appl. Phys., 47(29):295202, 2014. doi:10.1088/0022-3727/47/29/295202.
V. R. T. Narayanan, M. Gnybida, and C. Rümpler. Transport and radiation properties of C4F7N-CO2 gas mixtures with added oxygen. J. Phys. D Appl. Phys., 55(29):295502, 2022. doi:10.1088/1361-6463/ac6af5.
J. Annaloro, P. Teulet, A. Bultel, et al. Non-uniqueness of the multi-temperature law of mass action. Application to 2T plasma composition calculation by means of a collisional-radiative model. Eur. Phys. J. D, 71(342):1–14, 2017. doi:10.1140/epjd/e2017-80284-5.
V. Colombo, E. Ghedini, and P. Sanibondi. Two-temperature thermodynamic and transport properties of carbon–oxygen plasmas. Plasma Sources Sci. T., 20(3):035003, 2011. doi:10.1088/0963-0252/20/3/035003.
W. Wang, J. D. Yan, M. Rong, et al. Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J. Phys. D Appl. Phys., 46(6):065203, 2013. doi:10.1088/0022-3727/46/6/065203.
X. Li, H. Zhao, and A. B. Murphy. SF6-alternative gases for application in gas-insulated switchgear. J. Phys. D Appl. Phys., 51(15):153001, 2018. doi:10.1088/1361-6463/aab314.
P. Pietrzak, J. T. Engelbrecht, D. Kumari, and C. M. Franck. Short-line fault interruption performance comparison of SF6 alternatives. IEEE Trans. Power Delivery, 39(6):3071–3081, 2024. doi:10.1109/TPWRD.2024.3451178.
G. Wang, B. Zhang, M. Cao, et al. Two-temperature thermodynamic and transport properties of C4F7N-CO2-O2 mixture as an arc-extinguishing gas. J. Phys. D Appl. Phys., 58(16):165502, 2025. doi:10.1088/1361-6463/adbcbd.
X. Baumann, P. Teulet, Y. Cressault, and A. Bultel. Study on reaction rates for 2T SF6 plasma: application to chemical kinetics of a decaying arc in high voltage circuit breakers. J. Phys. Conf. Ser., 1243:012007, 2019. doi:10.1088/1742-6596/1243/1/012007.
P. André, M. Abbaoui, A. Augeard, et al. Study of condensed phases, of vaporization temperatures of aluminum oxide and aluminum, of sublimation temperature of aluminum nitride and composition in an air aluminum plasma. Plasma Chem. Plasma Process, 36:1161–1175, 2016. doi:10.1007/s11090-016-9704-7.
Y. Cressault, P. Teulet, X. Baumann, and A. Gleizes. Non-equilibrium phenomena in thermal plasmas. Plasma Res. Express, 2(4):043001, 2020. doi:10.1088/2516-1067/abc1b9.
X. Baumann, P. Teulet, Y. Cressault, and A. Bultel. Radiative properties and numerical modeling of C4F7N-CO2 thermal plasma. Plasma Phys. Technol., 6(2):144–147, 2019. doi:10.14311/ppt.2019.2.144.
W. Wang, M. Rong, Y. Wu, et al. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas. Phys. Plasmas, 19(8):083506, 2012. doi:10.1063/1.4739778.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 G. Wang, B. Zhang, J. Deng, M. Cao, X. Li

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).