Impact of Collective Effects on Plasma Ionization

Authors

  • M. Djebli Theoretical Physics Laboratory, Faculty of Physic, USTHB BP. 32 Bab-Ezzouar 16079, Algiers

DOI:

https://doi.org/10.14311/ppt.2018.3.107

Keywords:

ionization, Saha equation, neutral plasma

Abstract

Plasma can be produced using different schemes based on ionization processes of a neutral gas. Recently, it was demonstrated that due to collective effects the ionization potential of chemical elements can be changed particularly for a dense plasmas. We investigated this characteristic for monoatom gases and found that the critical density for which these effects are significant is no 1013 cm−3.The latter depends on atom’s ionization energy. It is also found that this effect can only be observed for a certain range of density and temperature related to the first ionization potential of the chemical element.

References

K. S. Drellishak, C. F. Knopp and A. B. Cambel. Partition function and thermodynamic properties of Argon plasma. Physics of Fluids 6(9):1280-1288, 1963, doi: 10.1063/1.1706896

G. Ecker and W. Kröll. Lowering of the Ionization Energy for a Plasma in Thermodynamic Equilibrium. Phys Fluids. 6(1):62-69, 1963, doi: 10.1063/1.1724509

J. C. Stewart and K.D. Pyatt. Lowering of Ionization Potentials in Plasmas. Astrophys. J. 144(3):1203-1211, 1966, doi: 10.1086/148714

B. J. B. Crowley. Continuum lowering – A new perspective. High Energy Density Physics 13:84-102, 2014, doi: 10.1016/j.hedp.2014.04.003

C. Lin, H. Reinholz and G. Röpke. Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas. Journal of Physics: Conf. Series 810:012051, 2017, doi: 10.1088/1742-6596/810/1/012051

J. Deprince, S. Fritzsche, T. Kallman, P. Palmeri and P. Quinet. Plasma effects on atomic data for the K-vacancy states of highly charged iron ions. AIP Conference Proceedings 1811(1):040002, 2017, doi: 10.1063/1.4975718

D. Wu, X. T. He, W. Yu, S. Fritzsche. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations. Phys. Rev. E 95:023208, 2017, doi: 10.1103/PhysRevE.95.023208

O. Ciricosta, et. al., Direct Measurements of the Ionization Potential Depression in a Dense Plasma. Phys. Rev. Lett. 109:065002, 2012, doi: 10.1103/PhysRevLett.109.065002

M. Djebli and W. M. Moslem. Self-similar expansion of a warm dense plasma. Phys. Plasmas 20:072702, 2013, doi: 10.1063/1.4812588

C. Lin, G. Röpke, W. D. Kraeft, and H. Reinholz. Ionization-potential depression and dynamical structure factor in dense plasmas.Phys. Rev. E 96: 013202, 2017, doi: 10.1103/PhysRevE.96.013202

S.K. Son, R. Thiele, Z. Jurek, B. Ziaja, and R. Santra. Quantum-mechanical calculation of ionization-potential lowering in dense plasmas. Phys. Rev. X 4:031004, 2014, doi: 10.1103/PhysRevX.4.031004

S. M. Vinko, O. Ciricosta, and J. S. Wark. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nat. Commun. 5: 3533, 2014, doi: 10.1038/ncomms4533

Downloads

Published

2019-01-08

Issue

Section

Articles