Silicon in Spectroscopic Data of World Databases

Authors

  • J. Pokorny Faculty of Electrical Engineering and Communication, BUT, Technicka 3058/10, 616 00 Brno

DOI:

https://doi.org/10.14311/ppt.2018.3.117

Keywords:

NIST database, Kurucz database, ALL database, Stark broadening

Abstract

This article deals with comparison of three world spectroscopic databases: NIST, Kurucz and Atomic Line List. Our target was to calculate the differences in input data and the ratio of Stark broadening and function F which depends on electron density, temperature and pressure. Stark broadening is one of pressure broadenings of spectral lines which arise from the collisions of the emitters with neighboring particles. Stark broadening is due to charged perturbers. We developed the program NKrov to be able to compare data in databases. There were some differences in the database format and content. Our results could be used in science and technology.

References

IBM Research Alliance Builds New Transistor for 5nm Technology. IBM. New York: International Business Machines, 2017. Available at: https://www-03.ibm.com/press/us/en/pressrelease/52531.wss

Atomic Spectra Database. National Institute of Standards and Technology. Gaithersburg (MD): National Institute of Standards and Technology, 2017. Available at: https://www.nist.gov/pml/atomic-spectra-database

R. L. Kurucz, Kurucz/Atoms. Robert L. Kurucz. Cambridge (MA): Harvard-Smithsonian Center for Astrophysics, 2011. Available at: http://kurucz.harvard.edu/atoms.html

P. van Hoof, Atomic Line List v2.04. UK College of Arts and Sciences: Physics & Astronomy. Lexington (KY): University of Kentucky, 1999. Available at: http://www.pa.uky.edu/ peter/atomic/

G. Liu, and B. Jacquier (EDS.). Spectroscopic properties of rare earths in optical materials. 1. Berlin: Springer, 2005. ISBN 978-354-0282-099. Available at: https://www.springer.com/gb/book/9783540238867

B. Edlen, The Refractive Index of Air. Metrologia. 2(2):71-80, 1966.

G. W. F. Drake, ed. Springer Handbook of Atomic, Molecular, and Optical Physics. 1. New York: Springer Verlag, 2007. ISBN 978-038-7336-343. Available at: https://www.springer.com/la/book/9780387208022

B. Simons, B. Part II: Advanced Quantum Mechanics. University of Cambridge: Theory of Condensed Matter. Cambridge (UK): University of Cambridge, 2009. Available at: http://www.tcm.phy.cam.ac.uk/ bds10/aqp.html

H. R. Griem, Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Physical Review. 165(1):258-266, 1968. doi: 10.1103/PhysRev.165.258. ISSN 0031-899X.

L. S. Rothman, I. E. Gordon, Y. Babikov, et al. The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer. 130:4-50, 2013. doi: 10.1016/j.jqsrt.2013.07.002. ISSN 0022-4073.

Downloads

Published

2019-01-08

Issue

Section

Articles