Morphology and Contact Properties of Polytetrafluoroethylene-Like Films Deposited onto Track-Etched Membrane Surface in Vacuum

Authors

  • L. Kravets Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Joliot-Curie 6, 141980 Dubna
  • R. Gainutdinov Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics", Russian Academy of Sciences, Leninskii pr. 59, 119333 Moscow
  • A. Gilman Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Science, Profsoyuznaya 70, 117393 Moscow
  • M. Yablokov Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Science, Profsoyuznaya 70, 117393 Moscow
  • V. Satulu National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Bucharest
  • B. Mitu National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Bucharest
  • G. Dinescu National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Bucharest

DOI:

https://doi.org/10.14311/ppt.2018.3.110

Keywords:

RF-magnetron sputtering of polymer, electron-beam dispersion of polymer, polytetrafluoroethylene, composite membranes

Abstract

The surface morphology and wettability of nanoscale polytetrafluoroethylene-like films deposited onto the surface of the poly(ethylene terephthalate) track-etched membrane by RF-magnetron and electron-beam sputtering of polytetrafluoroethylene in vacuum have been studied. It was shown that the morphology of films formed with the use of these coating techniques varies considerably. This is due to the size of the deposited polymer nanostructures. The nanostructures produced by the electron-beam sputtering of polytetrafluoroethylene are much bigger in size. Investigation of the surface properties of the composite membranes obtained in these processes showns that the deposition of the polytetrafluoroethylene-like film onto track-etched membrane leads to hydrophobization of its surface. The water contact angle for the composite membranes significantly increases.

References

T. D. Brock. Membrane filtration: a user’s guide and reference manual. Madison: Science Tec, 1983.

F. Garbassi et al. Polymer surface: from physics to technology. New York: Wiley, 1994.

J. Friedrich. The plasma chemistry of polymer surfaces: advanced techniques for surface design. Weinheim: Wiley, 2012.

M. Bryjak and I. Gancarz. Membrane prepared via plasma modification. In Membranes for membrane reactors: preparation, optimization and selection, chapter 25. Chichester (UK): John Wiley and Sons, 2011.

L. I. Kravets et al. Modification of polymer membrane properties by low-temperature plasma. Rus. J. Gener. Chem., 85(5):1284–1301, 2015. doi:10.1134/S107036321505045X.

H. O. Pierson. Handbook of chemical vapor deposition: principles, technologies and applications. Second printing. New York: Noyes Publications, 1999.

P. Y. Apel and S. N. Dmitriev. Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2:013002, 2011. doi:10.1088/2043-6262/2/1/013002.

V. Satulu et al. Synthesis and characterization of porous composite membranes with hydrophilic and hydrophobic sides. Thin Solid Films., 630:92–98, 2017. doi:10.1016/j.tsf.2016.08.052.

L. I. Kravets et al. Properties of poly(ethylene terephthalate) track membrane with a polymer layer obtained by electron-beam dispersion of polytetrafluoroethylene in vacuum. High Temp. Mater. Proc., 19(2):121–139, 2015. doi:10.1615/HighTempMatProc.2016016073.

M. Mulder. Basic principles of membrane technology. Dordrecht: Kluwer Acad. Publ., 1996.

L. I. Kravets et al. Fabrication and electrochemical properties of polymer bilayered membranes. Surf. Coat. Technol., 205(2):455–461, 2011. doi:10.1016/j.surfcoat.2011.04.013.

L. I. Kravets et al. Formation of diode-like composite membranes by plasma polymerization. Inorg. Mater. App. Res., 19(2):162–174, 2018. doi:10.1134/S207511331802017X.

L. I. Kravets et al. Investigation of morphology and chemical structure of nanosized polytetrafluoroethylene films deposited on the surface of track-etched membranes by plasma processing. High Energy Chemistry, 52(4):335–342, 2018.

D. Quere. Wetting and roughness. Ann. Rev. Mater. Res., 38:71–99, 2008. doi:10.1146/annurev.matsci.38.060407.132434.

Downloads

Published

2019-01-08

Issue

Section

Articles