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Abstract.
In this work, the Rayleigh-Taylor instability is addressed in a viscous-resistive current slab, by

assuming a finite electron skin depth. The formulation is developed on the basis of an extended form of
Ohm’s law, which includes a term proportional to the explicit time derivative of the current density. In
the neighborhood of the rational surface, a viscous-resistive boundary-layer is defined in terms of a
resistive and a viscous boundary-layers. As expected, when viscous effects are negligible, it is shown
that the viscous-resistive boundary-layer is given by the resistive boundary-layer. However, when
viscous effects become important, it is found that the viscous-resistive boundary-layer is given by the
geometric mean of the resistive and viscous boundary-layers. Scaling laws of the time growth rate of
the Rayleigh-Taylor instability with the plasma resistivity, fluid viscosity, and electron number density
are discussed.
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1. Introduction
The classical Rayleigh-Taylor instability [1, 2] occurs
at the interface of two fluids, when the more dense
fluid is supported by the less dense fluid against gra-
vity. In magnetically confined plasmas, the role of the
more dense fluid is played by the plasma itself, that
of the less dense ”fluid”, by the magnetic field, and
”gravity” is interpreted as the centrifugal acceleration,
experienced by the guiding-centers of charged species,
following curved magnetic field lines. Actually, the
particles are subjected to the centrifugal force [3]

~F = −msv
2
G

(
~b · ∇

)
~b, (1)

where ms is the species mass, vG, the guiding-center
speed, and ~b, the unit vector along the curved mag-
netic field line.
The simplest example considers a circular line of

radius r0. By adopting plane polar coordinates (r, θ),
we can put ~b = θ̂ and ~vG = θ̂vG. Since r0 is constant,
we have ∇ = θ̂∂/ (r0∂θ), and given that θ̂ · θ̂ = 1 and
∂θ̂/∂θ = −r̂, we obtain the more usual form of the
centrifugal force,

~F = r̂ms
v2

G
r0
. (2)

The gravitational field is defined as a centrifugal
acceleration, by taking the average of Eq. (1) over
many gyro-periods,

~g = −v2
T

(
~b · ∇

)
~b, (3)

where vT =
√
< v2

G > is the thermal speed, with
< · > denoting the above mentioned average. As a
matter of fact, Eq. (3) describes the average effect of
the curvature of magnetic field lines on a fluid model
for a magnetically confined plasma.

2. Current slab
The simplest model for a magnetically confined plas-
ma is the current slab [4, 5]. By adopting Cartesian
coordinates (x, y, z), a constant magnetic field B0z is
externally applied to an infinite plasma and a current
density 0z (x) flows in a plane slab of x-thickness a.
According to Ampère’s law, a magnetic field B0y (x)
is produced and the average effect of the shear of
the resulting field lines on the slab is described by a
constant gravitational field gx.
We consider that any field may be decomposed as

φ (~r, t) = φ0 (x) + φ1 (x) exp
(
γt+ ı~k · ~r

)
, (4)

where φ0 and φ1 are the equilibrium and perturbative
fields, respectively, and γ and ~k (x̂ · ~k = 0) denote
the time growth rate of the field amplitudes and the
perturbative wave vector, respectively. Specifically,
we suppose a static state of equilibrium for the system
(the equilibrium flow field ~v0 = 0) and an incompressi-
ble perturbation (as shown in Ref. [6], the condition
∇·~v1 = 0, for the incompressibility of the perturbative
flow field, replaces the adoption of an adiabatic, or
isothermal, equation of state). Particularly, we assume
only infinitesimal perturbations (| φ1 |�| φ0 |), in the
linear approximation (terms of O

(
φ2

1
)
∼ 0).

3. Rational surface
If we consider an inviscid, perfectly conducting plasma,
with flow field ~v, the magnetic flux becomes ”frozen”
inside the fluid and the electric field in a co-moving
frame vanishes, [7] ~E + ~v × ~B = 0, where ~E and ~B
are the electric and magnetic fields, respectively, in
the laboratory frame. By linearizing Faraday’s law,
we obtain

95

http://dx.doi.org/10.14311/ppt.2018.3.95


F. E. M. Silveira Plasma Physics and Technology

B1x = − 1
ω

(
~k · ~B0

)
v1x, (5)

where we have put γ = −ıω, since the static state
of equilibrium of the system is obviously stable with
respect to the perturbation, because dissipative effects
are fully absent.
If the direction of ~B0 were constant, the direction

of ~k could be always chosen such that ~k · ~B0 = 0
and no bending of the magnetic field lines would be
produced. However, due to the shear exhibited by
the ~B0-lines, the condition ~k · ~B0 = 0 can be satisfied
only at some point in the plasma. The condition
~k · ~B0 = 0 defines the so-called rational surface and, in
the neighborhood of the singular point, the distortion
of the magnetic field lines provokes the appearance
of a restoring force, which exactly opposes to the
perturbation-driving force. This is the well-known
stabilizing effect due to shear of the Rayleigh-Taylor
instability [8].

4. Lorentz force
If we consider a resistive, singularly ionized, appro-
ximately neutral plasma, the flux freezing condition
may be replaced by Ohm’s law in the form [4, 5, 9]

~E + ~v × ~B = η~+ µ0δ
2
e
∂~

∂t
, (6)

where η is the plasma resistivity, ~, the current density,
µ0, the vacuum magnetic permeability, and

δe =
√

me

µ0nee2 , (7)

the finite electron skin depth, with me, ne, and e de-
noting the electron mass, number density, and charge,
respectively.
By linearizing Eq. (6), we get

~E1 + ~v1 × ~B0k =
(
η + γµ0δ

2
e
)
~1, (8)

where ~B0k is the component of ~B0 parallel to ~k.
Next, by taking the vector product of Eq. (8) with

~B0k, we have

~E1× ~B0k+
(
~v1 × ~B0k

)
× ~B0k =

(
η + γµ0δ

2
e
)
~1× ~B0k,

(9)
with the double vector product

(
~v1 × ~B0k

)
× ~B0k =

(
~v1 · ~B0k

)
~B0k − ~v1B

2
0k. (10)

The drift term ~E1 × ~B0k, on the lhs of Eq. (9), can
be expressed from the linearization of the Faraday
and Ampère laws, (for details, see Ref. [4])

ıx̂× ~B0k

(
~k · ~E′1

)
+k2 ~E1× ~B0k = −γµ0~1× ~B0k, (11)

where the prime denotes a total derivative wrt x.

Finally, by eliminating ~E1 × ~B0k between Eqs. (9)
and (11), and, in the sequel, taking the x-component
of the result, we obtain the Lorentz force

x̂ ·
(
~1 × ~B0k

)
= −

[
1 +

(
1 + k2δ2

e
) γτD

k2a2

]−1 B2
0k
η
v1x,

(12)
where we have introduced the diffusion time scale

τD = µ0a
2

η
. (13)

5. Viscous force
The x-component of the viscous force is given by

x̂ · ∇2~v1 = v′′1x − k2v1x. (14)

In the neighborhood of the rational surface, the
magnetic force on charged species cannot depend on
the x-coordinate, otherwise the gravitational field can-
not remain constant,

(v1xB0k)′ = 0. (15)

Close to the singular point, we Taylor-approximate
B0k by

B0k ∼ waB′0k, (16)

where w � 1 is a positive, dimensionless number,
which determines the width wa of a (viscous-resistive)
boundary-layer.

By combining Eqs. (14), (15), and (16), we obtain

x̂ · ∇2~v1 =
(

3
w2a2 − k

2
)
v1x. (17)

6. Viscous-resistive boundary-layer
According to Eqs. (12) and (17), the restoring force is
completely determined by the Lorentz + viscous forces,
x̂ ·
(
~1 × ~B0k + νρ0∇2~v1

)
, where ν is the fluid kine-

matic viscosity and ρ0, the equilibrium mass density.
In the neighborhood of the rational surface, the restor-
ing force approaches the gravitational (perturbation-
driving) force ρ1gx, where ρ1 is the perturbative mass
density. By linearizing the continuity equation, we
obtain (recall that ∇ · ~v1 = 0)

ρ1 = −ρ
′
0
γ
v1x. (18)

Therefore, by combining Eqs. (12), (17), and (18),
we find how to estimate the width wa of the viscous-
resistive boundary-layer,

w4

w4
η

−
(

3− k2a2w2
ν

3

)
w2

w2
η

− w2
ν

w2
η

= 0, (19)

where we have introduced the width wηa of a resistive
boundary-layer,
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wη =
√[

1 + (1 + k2δ2
e ) γτD

k2a2

] κα
γτD

, (20)

and the width wνa of a viscous boundary-layer,

wν =
√
γτD

κα

ν

νM
, (21)

with νM denoting a (magnetic) viscosity scale, [10]

νM = v2
AτD

3 , (22)

defined in terms of the Alfvén speed vA, in the form

vA = aB′0k√
µ0ρ0

. (23)

In accordance with Eq. (23), we may also define
the Alfvén time scale

τA = a

vA
, (24)

which, in turn, determines the ”height of free-fall”

α = gxτ
2
A

2 (25)

of charged species, in the constant gravitational field
gx, in the Alfvén time interval τA.
From Eqs. (20) and (21), we see that the length

scale α is always corrected by the coefficient

κ =
(
ln ρ2

0
)′
, (26)

which accounts for possible fluid inhomogeneities.

7. Dispersion relation
In the neighborhood of the rational surface, the gra-
vitational work approaches the variation of the fluid
kinetic energy,

v1xρ1gx ∼ γρ0
(
v2

1x + v2
1k
)
, (27)

where v1k is the component of ~v1 parallel to ~k.
The lhs of Eq. (27) can be trivially determined

from Eq. (18). To determine the rhs of Eq. (27), first
we note that

∇ · ~v1 = v′1x + ıkv1k = 0. (28)

Next, from Eqs. (15) and (16), we observe that

v′1x ∼ −
v1x

wa
. (29)

By combining Eqs. (28) and (29), we write

v1k ∼ −ı
v1x

wka
. (30)

Since w � 1, we conclude that

v2
1x + v2

1k ∼ −
v2

1x
w2k2a2 . (31)

Plugging Eqs. (18) and (31) in Eq. (27), we get

ρ′0gx
γ
∼ γρ0

w2k2a2 . (32)

Finally, by combining Eqs. (24), (25), and (26)
with Eq. (32), we find the dispersion relation of the
Rayleigh-Taylor instability

γ2τ2
A = καw2k2a2. (33)

From Eq. (33), it is evident that the condition
κα > 0 must be satisfied for that γ > 0. In other
words, the charged species must ”fall down” in the
constant gravitational field gx for that the static state
of equilibrium of the system becomes unstable to the
linear perturbation.

8. Scaling laws
Quite interestingly, a detailed inspection of Eqs. (9)
and (11) reveals that

γτD

k2a2 ∼
| ~E1 × ~B0k |

| (~v1 × ~B0k)× ~B0k |
. (34)

When γτD � k2a2, the contribution of the drift term
~E1 × ~B0k to the Lorentz force is negligible and the
electromotive force (~v1 × ~B0k) × ~B0k is sufficient to
balance out the dissipative effects, due to the plasma
resistivity and fluid viscosity. However, when γτD �
k2a2, the contribution of (~v1 × ~B0k) × ~B0k to the
Lorentz force becomes negligible and ~E1 × ~B0k is
sufficient to balance-out the dissipative effects.
In the approximation γτD � k2a2, we have two

limiting situations. First, when viscous effects are
negligible, wν � wη, Eq. (19) shows that

w ∼ wη, (35)
and Eq. (33) furnishes the scaling law

γ ∼ η1/3, (36)
which depends on the plasma resistivity and recovers
the classical result of the Rayleigh-Taylor instability,
as observed in magnetically confined plasmas [8].
Somewhat surprisingly, when resistive effects are

negligible, wν � wη, Eq. (19) shows that

w ∼ √wηwν , (37)
and Eq. (33) furnishes the scaling law

γ ∼ (ην)1/4
, (38)

which depends on both the plasma resistivity and fluid
viscosity.

On the assumption of sufficiently short perturbative
wavelengths, k2δ2

e � 1, the opposite approximation,
γτD � k2a2, also leads up to two limiting situations.
First, when condition (35) holds, Eq. (33) furnishes
the scaling law

γ ∼ n−1/2
e , (39)
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which depends on the electron number density.
Finally, when condition (37) holds, Eq. (33) fur-

nishes the scaling law

γ ∼
(
ν

ne

)1/3
, (40)

which depends on both the electron number density
and fluid viscosity.

9. Conclusion
In this work, the Rayleigh-Taylor instability has been
addressed in a viscous-resistive current slab, by as-
suming a finite electron skin depth. The formulation
has been developed on the basis of an extended form
of Ohm’s law, which includes a term proportional to
the explicit time derivative of the current density. In
the neighborhood of the rational surface, a viscous-
resistive boundary-layer has been defined in terms of a
resistive and a viscous boundary-layers. As expected,
when viscous effects are negligible, it has been shown
that the viscous-resistive boundary-layer is given by
the resistive boundary-layer. However, when viscous
effects become important, it has been found that the
viscous-resistive boundary-layer is given by the geo-
metric mean of the resistive and viscous boundary-
layers. Scaling laws of the time growth rate of the
Rayleigh-Taylor instability with the plasma resistivity,
fluid viscosity, and electron number density have been
discussed.
Further developments of our formulation may be

of interest for the investigation of plasma instabili-
ties due to sufficiently short perturbative wavelengths.
For instance, recently, hydromagnetic shock waves
[11], followed by pulsed emissions with wavelengths of
the order of 650 nm [12], have been observed. More
recently, it has been noted that repeated loading of
transient events, like edge localized modes (ELMs),
constitute a potential damage to reactor-relevant ma-
terials [13]. Actually, it has long been argued that
ELMs can yield an intense transient flux of both e-
nergy and particles into the ITER divertor [14]. As a
matter of fact, during an experiment conducted in a
quasi-stationary plasma accelerator (QSPA), at the
TRINITI Institute, a significant erosion of tungsten
targets has been detected, following their exposition
to a series of repetitive pulses, characteristic of type
I ELMs [15]. Further refined experiments, as well
as numerical simulations, apparently, have confirmed
such findings [16].
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