Metallic Nanoparticles Generation by Repetitive Pulsed Laser for Applications in Bio-Medicine

Authors

  • N. Restuccia Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, MIFT, Università di Messina, V.le F. Stagno d’Alcontres 31, 98166 S. Agata, Messina
  • L. Silipigni Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, MIFT, Università di Messina, V.le F. Stagno d’Alcontres 31, 98166 S. Agata, Messina
  • M. Cordaro Dip.to di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali,Università di Messina
  • L. Torrisi Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, MIFT, Università di Messina, V.le F. Stagno d’Alcontres 31, 98166 S. Agata, Messina

DOI:

https://doi.org/10.14311/ppt.2019.1.1

Keywords:

Laser ablation in water, nanoparticles, imaging, therapy

Abstract

A Nd:YAG pulsed laser operating at the 1064 nm wavelength, the 3 ns pulse duration, the 1010 W/cm2 intensity and the 10 Hz repetition rate is employed to irradiate biocompatible metallic targets based on Au, Bi and Ag placed in water. The laser-matter interaction produces nanometric spherical particles. The concentration of the solution with nanoparticles is controllable by the laser parameters, the ablative emission process, the irradiation time and the water’s volume. Generally, nanoparticles of about 10 nm in size and concentrations of the order (0.1 ÷ 10) mg/ml are prepared to be injected in cell cultures or in living systems (mice). The nanoparticles introduction in the extra and intra cellular liquids improves the bio-imaging of the tissue and organs by using fluorescence techniques. Moreover, if these nanoparticles are concentrated in tumour cells, they make possible high efficiency radio-therapy and thermal-therapy treatments, as it will be presented and discussed.

References

L. Torrisi. Radiotherapy improvements by using Au nanoparticles. Recent patents on Nanotechnology, 9(2):114–125, 2015. doi:10.2174/187221050902150819153355.

L. Torrisi, N. Restuccia, S. Cuzzocrea, I. Paterniti, D. Ielo, S. Pergolizzi, M. Cutroneo, and L. Kovacik. Laser-produced au nanoparticles as x-ray contrast agents for diagnostic imaging. Gold Bulletin, 50(1):51–60, 2017. doi:10.1007/s13404-017-0195-y.

L. Torrisi. Evaluation of the radiotherapy and proton therapy improvements using gold nanoparticles. Gold Bulletin, 50(4):299–311, 2017. doi:10.1007/s13404-017-0216-x.

L. Torrisi. Gold nanoparticles enhancing protontherapy efficiency. Recent patents on Nanotechnology, 9(1):51–60, 2015. doi:10.2174/1872210509999141222224121.

L. Torrisi and A. Torrisi. Laser ablation parameters influencing gold nanoparticle synthesis in water. Radiation Effects and Defects in Solids, 173(9-10):729–739, 2018. doi:10.1080/10420150.2018.1528598.

J. Fang, K. L. Stokes, J. A. Wiemann, W. L. Zhou, J. Dai, F. Chen, and C. J. O’Connor. Microemulsion-processed bismuth nanoparticles. Materials Science and Engineering: B, 83(1-3):254–257, 2001. doi:10.1016/S0921-5107(01)00528-1.

M. Maciulevičius, A. Vinčiu¯nas, M. Brikas, A. Butsen, N. Tarasenka, N. Tarasenko, and G. Račiukaitis. On-line characterization of gold nanoparticles generated by laser ablation in liquids. Physics Procedia, 41:531–538, 2013. doi:10.1016/j.phpro.2013.03.112.

L. Torrisi, L. Silipigni, N. Restuccia, S. Cuzzocrea, M. Cutroneo, F. Barreca, B. Fazio, G. Di Marco, and S. Guglielmino. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. Journal of Physics and Chemistry of Solids, 119:62–70, 2018. doi:10.1016/j.jpcs.2018.03.034.

F. Xia, X. Xu, X. Li, L. Zhang, L. Zhang, H. Qiu, W. Wang, Y. Liu, and J. Gao. Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-nitrophenol. Industrial & Engineering Chemistry Research, 53(26):10576–10582, 2014. doi:10.1021/ie501142a.

L. Torrisi, N. Restuccia, and I. Paterniti. Gold nanoparticles by laser ablation for x-ray imaging and protontherapy improvements. Recent patents on Nanotechnology, 12(1):59–69, 2018. doi:10.2174/1872210511666170609093433.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed. Au nanoparticles target cancer. nano today, 2(1):18–29, 2007. doi:10.1016/S1748-0132(07)70016-6.

K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P. C. Wang, S. He, X. Zhang, and X. Liang. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS nano, 6(5):4483–4493, 2012. doi:10.1021/nn301282m.

Downloads

Published

2019-07-31

Issue

Section

Articles