Linear Pinch Equilibrium of Non-Neutral Plasma Revisited: Phenomenological Consequences of a Numerical Accuracy Problem
DOI:
https://doi.org/10.14311/ppt.2019.3.217Keywords:
Locally Non-neutral Plasma, Linear Pinch, Skin Effect, Numerical AccuracyAbstract
Weibel in 1959 under considerations of a collisionless non-neutral cylindrical plasma column studied a linear pinch confinement equilibrium. As reported here, due to non-linearity of the ordinary differential equations obtained for the electrostatic and magnetostatic fields is possible to demonstrate that the confining features previously obtained are extremely dependent on the initial conditions, and the arrangement of two parameters (β - the ratio between ion and electron mass; M/KT - ratio between relativistic rest energy associated with the pair electron-ion and thermal energy kT ) related to the plasma column characteristics. We investigated in this paper the plasma column behavior (confining or non-confining) under modifications of that set of parameters. We detected a set of parameters values that imposes a confining configuration with an electronic skin effect on the plasma column, not yet reported or discussed in the literature.References
P. Helander. Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys., 77(8):087001, 2014. doi:10.1088/0034-4885/77/8/087001.
M. D. Kruskal and R. M. Kulsrud. Equilibrium of a Magnetically Confined Plasma in a Toroid. Phys. Fluids, 1(4):265–274, 1958. doi:10.1063/1.1705884.
D. Mascali, G. Torrisi, L. Neri, G. Sorbello, G. Castro, L. Celona, and S. Gammino. 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistency. Eur. Phys. J. D, 69(1), 2015. doi:10.1140/epjd/e2014-50168-5.
C. B. Smiet, S. Candelaresi, A. Thompson, J. Swearngin, J. W. Dalhuisen, and D. Bouwmeester. Self-Organizing Knotted Magnetic Structures in Plasma. Phys. Rev. Lett., 115:095001, Aug 2015. doi:10.1103/PhysRevLett.115.095001.
W. A. Newcomb. Hydromagnetic stability of a diffuse linear pinch. Ann. Phys., 10(2):232–267, 1960. doi:10.1016/0003-4916(60)90023-3.
J. Koliner, M. Cianciosa, J. Boguski, J. Anderson, J. Hanson, B. Chapman, D. Brower, D. Den Hartog, W. Ding, J. Duff, et al. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell. Physics of Plasmas, 23(3):032508, 2016.
U. Shumlak, B. Nelson, E. Claveau, E. Forbes, R. Golingo, M. Hughes, R. Oberto, M. Ross, and T. Weber. Increasing plasma parameters using sheared flow stabilization of a z-pinch. Physics of Plasmas, 24(5):055702, 2017.
E. Kroupp, E. Stambulchik, A. Starobinets, D. Osin, V. Fisher, D. Alumot, Y. Maron, S. Davidovits, N. Fisch, and A. Fruchtman. Turbulent stagnation in a z-pinch plasma. Physical Review E, 97(1):013202, 2018.
J. Goedbloed. Stabilization of magnetohydrodynamic instabilities by force-free magnetic fields. Physica, 53(4):501–534, 1971. doi:10.1016/0031-8914(71)90113-3.
E. S. Weibel. On the Confinement of a Plasma by Magnetostatic Fields. Phys.Fluids, 2(1):52–56, 1959. doi:10.1063/1.1724391.
F. F. Chen and M. D. Smith. Plasma. John Wiley and Sons, Inc., 2005. doi:10.1002/0471743984.vse9673.
G. Schmidt and D. Finkelstein. Magnetically Confined Plasma with a Maxwellian Core. Phys. Rev., 126:1611–1615, Jun 1962. doi:10.1103/PhysRev.126.1611.
C. C. Pian and A. W. McClaine. Techniques for the solution of MHD generator flows. Comput. Fluids, 12(4):319–338, 1984. doi:10.1016/0045-7930(84)90013-6.
P. Gratreau and P. Giupponi. Vlasov equilibria of cylindrical relativistic electron beams of arbitrary high intensity. Phys. Fluids, 20(3):487–493, 1977. doi:10.1063/1.861887.
B. M. Annaratone, W. Jacob, C. Arnas, and G. E. Morfill. Critical review of complex plasma (dusty plasma) diagnostics and manipulation techniques for the fusion community and others. IEEE Transactions on Plasma Science, 37(1):270–280, Jan 2009. doi:10.1109/TPS.2008.2006269.
P. K. Shukla and A. A. Mamun. Introduction to dusty plasma physics. Plasma Physics and Controlled Fusion, 44(3):395, 2002. doi:10.1088/0741-3335/44/3/701.
A. A. Fridman, L. Boufendi, T. Hbid, B. V. Potapkin, and A. Bouchoule. Dusty plasma formation: Physics and critical phenomena. theoretical approach. Journal of Applied Physics, 79(3):1303–1314, 1996. doi:10.1063/1.361026.
S. Mayout, L. A. Gougam, and M. Tribeche. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons. Physics of Plasmas, 23(3):033701, 2016. doi:10.1063/1.4942935.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3 edition, 2007.
D. Griffiths. Introduction to Electrodynamics. Prentice Hall, 1999.
D. Forcella, J. Zaanen, D. Valentinis, and D. Van Der Marel. Electromagnetic properties of viscous charged fluids. Physical Review B, 90(3):035143, 2014.
F. Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva, T.-M. Tran, and C. Wersal. The gbs code for tokamak scrape-off layer simulations. Journal of Computational Physics, 315:388–408, 2016.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).