Modelling and Experimental Investigations of DC Electric Arcs in Argon and Carbone Dioxide

Authors

  • C. Mohsni University of Monastir - Tunisia, Leibniz Institut for Plasma Science and Technology - Germany
  • M. Baeva Leibniz Institut for Plasma Science and Technology
  • S. Franke Leibniz Institut for Plasma Science and Technology <br />
  • S. Gortschakow Leibniz Institut for Plasma Science and Technology
  • D. Gonzalez Leibniz Institut for Plasma Science and Technology
  • Z. Araoud University of Monastir
  • K. Charrada University of Monastir

DOI:

https://doi.org/10.14311/ppt.2019.1.51

Keywords:

thermal plasma, electric arcs, plasma-electrode interaction, plasma diagnostics

Abstract

In this work an arc model is employed along with electric and spectroscopic measurements to study DC electric arcs in Ar and CO2. The model is aimed at describing the arc and the electrodes. Simulation and experimental results are shown for currents between 150 A and 210 A.

References

A. Shirvan et al. Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode. J. Phys. D: Appl. Phys., 49(48):5201, 2016. doi:10.1088/0022-3727/49/48/485201/meta.

M. Lisnyak et al. Numerical modelling of high-pressure arc discharges: matching the LTE arc core with the electrodes. J. Phys. D: Appl. Phys., 50(31):5203, 2017. doi:10.1088/1361-6463/aa76d3/meta.

J. J. Lowke et al. A simplified unified theory of arcs and their electrodes. J. Phys. D: Appl. Phys., 30(14):2033-2042, 1997. doi:10.1088/0022-3727/30/14/011.

L. Sansonnens et al. Prediction of properties of free burning arcs including effects of ambipolar diffusion. J. Phys. D: Appl. Phys., 33(2):148–157, 2000. doi:10.1088/0022-3727/33/2/309.

M. Baeva et al. Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Science and Technology, 21(5):5027, 2012. doi:10.1088/0963-0252/21/5/055027.

M. Baeva et al. Novel non-equilibrium modelling of a DC electric arc in argon. J. Phys. D: Appl. Phys., 49(24):5205, 2016. doi:10.1088/0022-3727/49/24/245205/meta.

A. B. Murphy. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem. Plasma Proc., 15(2):279, 1995. doi:10.1007/BF01459700.

A. B. Murphy and C. J. Arundell. Transport-Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas. Plasma Chem. Plasma Proc., 14(4):451–490, 1994. doi:10.1007/BF01570207.

J. R. Stallcop at al. Potential energies and collision integrals for interactions of carbon and nitrogen atom. J. Thermophys. Heat Transf., 14:480–488, 2000. doi:10.2514/2.6570.

M. S. Benilov and A. Marotta. A Model of the Cathode Region of Atmospheric-Pressure Arcs. J. Phys. D: Appl. Phys., 28(9):1869–1882, 1995. doi:10.1088/0022-3727/28/9/015/meta.

M. S. Benilov and M. D. Cunha. Heating of refractory cathodes by high-pressure arc plasmas: I. J. Phys. D: Appl. Phys., 35(14):1736–1750, 2002. doi:10.1088/0022-3727/35/14/314.

S. Lichtenberg et al. The plasma boundary layer of HID-cathodes: modelling and numerical results. J. Phys. D: Appl. Phys., 38(17):3112–3127, 2005. doi:10.1088/0022-3727/38/17/S13.

J. Heberlein et al. The anode region of electric arcs: a survey. J. Phys. D: Appl. Phys., 43(2):3001, 2010. doi:10.1088/0022-3727/43/2/023001/meta.

Downloads

Published

2019-07-31

Issue

Section

Articles