Optical Emission Spectroscopy of Magnethron Discharge Ar/Cu Plasma

Authors

  • A. Murmantsev Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • A. Veklich Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • V. Boretskij Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • A. Shapovalov G.V.Kurdjumov Institute for Superhard Materials, Academy of Sciences of Ukraine
  • A. Kalenyuk G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.14311/ppt.2019.1.87

Keywords:

magnetron, argon plasma, spectroscopy, Boltzmann plots

Abstract

Plasma parameters (excitation temperature and electron density) of pulsing magnetron discharge is studied by optical emission spectroscopy. Such discharges are usually used as effective sources in sputtering or deposition processes. Vapor admixtures in argon plasma define mainly the temperature and electron density in such discharges. This is the feature, which is typically takes place in plasma of discharge between contacts/electrodes in switching devices of electric technology circuits.

References

D. Mattox. The Material Science of Thin Films. Academic Press, San Diego, 1992.

M. Ohring. Handbook of Physical Vapor Deposition (PVD) Processing. Noyes Publications, Westwood, 1998.

T. Michely and J. Krug. Islands Mounts and Atoms. Springer, Berlin, 2004.

O. Auciello and R. Kelly. Ion Bombardment Modification of Surfaces: Fundamentals and Applications. Elsevier Science Ltd, Amsterdam, 1984.

P. Petrov, Barna, L. Hultman, and J. Greene. Microstructural evolution during film growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21(5):S117–S128, 2003. doi:10.1116/1.1601610.

P. Barna and M. Adamik. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin solid films, 317(1-2):27–33, 1998. doi:10.1016/S0040-6090(97)00503-8.

C. Christou and Z. Barber. Ionization of sputtered material in a planar magnetron discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(6):2897–2907, 2000. doi:10.1116/1.1312370.

D. Mozgrin, I. Fetisov, and G. Khodachenko. Pulsed probe technique for determining the plasma parameters of a high-current low-pressure diffuse discharge. Plasma Physics Reports, 25(3):255–260, 1999.

S. Bugaev, N. Koval, N. Sochugov, and A. Zakharov. XVIIth International on Discharges and Electrical Insulation in Vacuum. Noyes Publications, Westwood, 1996.

B. Chapman. Glow Discharge Processes. John Wiley & Sons, 1981.

A. Veklich, A. Lebid, T. Tmenova, V. Boretskij, Y. Cressault, F. Valensi, K. Lopatko, and Y. Aftandilyants. Plasma assisted generation of micro-and nanoparticles. Plasma Physics and Technology, 21:28–31, 2017. doi:10.14311/ppt.2017.1.28.

R. Konjevi’c and N. Konjevi’c. Stark broadening and shift of neutral copper spectral lines. Fizika, 18:327–335, 1986.

R. Venger, T. Tmenova, F. Valensi, A. Veklich, Y. Cressault, and V. Boretskij. Detailed investigation of the electric discharge plasma between copper electrodes immersed into water. Atoms, 40(5):1–17, 2017. doi:10.3390/atoms5040040.

Downloads

Published

2019-07-31

Issue

Section

Articles