Development of a Two-Temperature Mathematical Model of Plasma Processes in a Discharge Chamber of a Multi-chamber Arrester Operating in Conditions of Mountain Areas

Authors

  • V. Frolov Peter the Great St. Petersburg Polytechnic University
  • D. Ivanov Peter the Great St. Petersburg Polytechnic University
  • A. Sivaev Streamer Electric AG
  • A. Chusov Streamer Electric AG

DOI:

https://doi.org/10.14311/ppt.2019.2.135

Keywords:

2T model, simulation, pulse arc discharge, multi-chamber arrester

Abstract

This article is devoted to a development of a mathematical model of plasma processes in a discharge chamber of a multi-chamber arrester operating under reduced pressure. The results obtained using this model will make it possible to develop recommendations on modifying the design of multi-chamber arresters for operation in conditions of mountain areas.
A composition, thermodynamic and transport properties of plasma for the two-temperature model were calculated on the basis of the data on the materials of the discharge chamber and on the basis of the experiments performed earlier.
The paper presents the results of calculations i.e. distributions of discharge voltage and electrical conductivity on time at various pressures. A comparison of obtained results was carried out.

References

G. Podporkin, E. Enkin, E. Kalakutsky, V. Pilshikov, and A. Sivaev. Lightning protection of overhead lines by multi-chamber arresters and insulator-arresters. In Proceedings of the 30th Int. Symp. on Lightning Protection, page 7845759, 2010. doi:10.1109/ICLP.2010.7845759.

R. Kozakov, A. Khakpour, S. Gorchakov, D. Uhrlandt, D. Ivanov, I. Murashov, G. Podporkin, and V. Frolov. Investigation of a multi-chamber system for lightning protection at overhead power lines. Plasma Physics and Technology, 2(2):150–154, 2015.

G. Podporkin. Development of long flashover and multi-chamber arresters and insulator-arresters for lightning protection of overhead distribution and transmission lines. Plasma Physics and Technology, 2(3):241–250, 2015.

M. Pinchuk, A. Budin, I. Kumkova, A. Bogomaz, A. Sivaev, A. Chusov, and R. Zaynalov. Energy deposition in discharge chamber of lightning protection multichamber system. Journal of Physics: Conference Series, 774(1):012187, 2016. doi:10.1088/1742-6596/774/1/012187.

V. Frolov, D. Ivanov, I. Murashov, and A. Sivaev. Calculation of the composition of plasma of an arc pulsed discharge in a multi-chamber arrester. Technical Physics Letters, 41(4):310–313, 2015. doi:10.1134/S1063785015040069.

V. Frolov, D. Ivanov, I. Murashov, and A. Sivaev. Mathematical simulation of processes in discharge chamber of multi-chamber system for lightning protection at overhead power lines. In Proceedings of the 2016 IEEE North West Russia section young researchers in electrical and electronic engineering conference, ELCONRUSNW 2016, pages 562–565, 2016. doi:10.1109/EIConRusNW.2016.7448245.

A. Chusov, G. Podporkin, M. Pinchuk, D. Ivanov, I. Murashov, and V. Frolov. Development of a physical 2-D model for arc quenching chamber of lightning protection multichamber systems. In Proceedings of the 2016 33rd International Conference On Lightning Protection, ICLP 2016, page 7791509, 2016. doi:10.1109/ICLP.2016.7791509.

Z. Guo, X. Long, Z. Qian, and N. Qiu. Three dimensional simulation of the arc inside an insulator-arrester with a multichamber system. AIP Advances, 6(4):045117, 2016. doi:10.1063/1.4948453.

V. Frolov, D. Ivanov, and R. Belsky. Increasing of operation security and of breaking capacity of surge arresters. In Proceedings of the 2017 IEEE Russia Section Young Researchers In Electrical And Electronic Engineering Conference, ELCONRUS 2017, pages 1520–1523, 2017. doi:10.1109/EIConRus.2017.7910861.

V. Frolov, D. Ivanov, G. Podporkin, and A. Sivaev. Development of mathematical model of processes in multi-chamber arrester for identification of criteria of arc extinction. In Proceedings of the 2017 International Symposium On Lightning Protection, XIV SIPDA 2017,pages 240–243, 2017. doi:10.1109/SIPDA.2017.8116930.

M. I. Boulos, P. Fauchais, and E. Pfender. Thermal Plasmas: Fundamentals and Applications. New York: Plenum, 1994.

M. Capitelli, G. Colonna, and A. D’Angola. Fundamental Aspects of Plasma Chemical Physics: Thermodynamics. Springer Series on Atomic, Optical, and Plasma Physics. Springer-Verlag New York, 2012.

V. P. Glushko et al. Thermodynamic and Thermophysical Properties of Combustion Products, Ed. by V. P. Glushko, Vol. 1. Nauka Moskva, 1971.

A. Suris. Thermodynamics of High-Temperature Processes. Metallurgiya Moskva, 1985.

V. Frolov and D. Ivanov. Calculation of a plasma composition and its thermophysical properties in cases of maintaining or quenching of electric arcs. Journal of Physics: Conference Series, page 012040, 2018. doi:10.1088/1742-6596/1058/1/012040.

NIST atomic spectra database. Official cite. http://physics.nist.gov/PhysRefData/ASD/index.html.

V. P. Glushko et al. Thermodynamic Properties of Individual Substances: Reference Book, 3rd ed., Vols. 1-4. Nauka Moskva, 1978-1982.

M. W. Chase Jr. NIST-JANAF Thermochemical Tables, Fourth Edition, Part I and II. Journal of Physical and Chemical Reference Data. 1998.

M. Capitelli, D. Bruno, and A. Laricchiuta. Fundamental Aspects of Plasma Chemical Physics: Transport. Springer Series on Atomic, Optical, and Plasma Physics. Springer-Verlag New York, 2013.

J. Hirschfelder, C. Curtiss, and R. Bird. Molecular theory of gases and Liquids. Wiley New York, 1954.

Y. Cressault, R. Hannachi, P. Teulet, A. Gleizes, J.-P. Gonnet, and J.-Y. Battandier. Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sources Science and Technology, 17(3):035016, 2008. doi:10.1088/0963-0252/17/3/035016.

P. Andre, J. Aubreton, S. Clain, M. Dudeck, E. Duffour, M. Elchinger, B. Izrar, D. Rochette, R. Touzani, and D. Vacher. Transport coefficients in thermal plasma. applications to mars and titan atmospheres. The European Physical Journal D, 57(2):227–234, 2010. doi:10.1140/epjd/e2010-00036-5.

E. Mason, R. Munn, and F. Smith. Transport coefficients of ionized gases. The Physics of Fluids, 10(8):1827–1832, 1967. doi:10.1063/1.1762365.

D. Ivanov, V. Skornyakov, I. Savelieva, M. Korotkikh, V. Shestakov, D. Uhrlandt, and G. Podporkin. Mathematical simulation of operation of multi-chamber arrester for lightning protection of power lines: calculation of thermophysical properties of nonequilibrium plasma. In MATEC Web of Conferences, volume 245, page 07003, 2018. doi:10.1051/matecconf/201824507003.

P. Freton, J. Gonzalez, Z. Ranarijaona, and J. Mougenot. Energy equation formulations for two-temperature modelling of ’thermal’ plasmas. Journal of Physics D: Applied Physics, 45(46):465206, 2012. doi:10.1088/0022-3727/45/46/465206.

Downloads

Published

2019-09-10

Issue

Section

Articles