Influence of Copper Vapors in SF6 Plasma

Authors

  • P. Freton Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS., 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
  • J.-J. Gonzalez Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS., 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
  • A. Harry Solo Laboratoire Plasma et Conversion d’Energie, Université de Toulouse, CNRS, INPT, UPS., 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
  • F. Reichert Siemens AG, EM HP CB R&D E, Nonnendammallee 104, 13629 Berlin, Germany
  • A. Petchanka Siemens AG, EM HP CB R&D E, Nonnendammallee 104, 13629 Berlin, Germany

DOI:

https://doi.org/10.14311/ppt.2019.2.161

Keywords:

copper ablation, high voltage circuit breaker, electric arc

Abstract

In this study a theoretical approach allows estimating the ablation mass flux of copper from a corrected Hertz-Knudsen flux. The influence of the copper vapours coming from the anode electrode to an SF6 plasma is studied in a simplified 2D configuration. Depending on the plasma pressure an ablation or a diffusion state is considered. The amount of copper versus time is presented. An RMS current I=10 kA is applied leading at t=10 ms to an amount of copper equal to 0.55 mg. The vapours change the plasma properties mainly the electrical conductivity and radiation and so the plasma behaviour. At time t=5 ms the electrode erosion leads to a copper plasma. This simple case shows the necessity to well consider the copper erosion in plasma modelling as in High Voltage Circuit Breaker (HVCB) where higher current are considered.

References

I. Semenov et al. Modelling of binary alloy (Al-Mg) anode evaporation. Modelling Simul. Mater. Sci. Eng., 20(5):055009, 2012. doi:10.1088/0965-0393/20/5/055009.

M. Benilov et al. Vaporization of a solid surface in an ambient gas. J. Phys. D: Appl. Phys., 34(13):1993–1999, 2001. doi:10.1088/0022-3727/34/13/310.

P. Freton et al. Proposition for a Cu/W ablation model for HVCB electrodes. In 21st International Conference on Gas Discharges and Their Appplications (GD2016), Sept 11-16 2016. Nagoya (JAPAN).

A. Gleizes et al. Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours. Plasma Sources Science and Technology, 19(5):055013, 2010. doi:10.1088/0963-0252/19/5/055013.

J.-J. Gonzalez et al. Turbulence and magnetic field calculations in high-voltage circuit breakers. IEEE Trans. Plasma. Sci., 40(3):936–945, 2012. doi:10.1109/TPS.2011.2180404.

F. Reichert et al. Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. J. Phys. D, Appl. Phys., 45(37):375201–375212, 2012. doi:10.1088/0022-3727/45/37/375201.

P. Freton et al. Magnetic field approaches in dc thermal plasma modelling. J. Phys. D, Appl. Phys., 44(34):202–345, 2011. doi:10.1088/0022-3727/44/34/345202.

Y. S. Touloukian. ThermophysicalProperties of Matter: The TPRC Data Series; a Comprehensive Compilation of Data. New York: IFI/Plenum, 1970.

C. Cagran and G. Pottlacher. Normal spectral emissivities of liquid copper, liquid goldand liquid silver at 684.5 nm. Journal of Non-Crystalline Solids, 353(32):3582–3586, 2007. doi:10.1016/j.jnoncrysol.2007.05.117.

J. J. Lowke and M. Tanaka. LTE-diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39(16):3634, 2006. doi:10.1088/0022-3727/39/16/017.

J. J. Lowke et al. Metal vapour in mig arcs can cause (1) minima in central arc temperatures and (2) increased arc voltages. Welding in the World, 54:R292–R297, 2013. doi:10.1007/BF03266742.

Downloads

Published

2019-09-10

Issue

Section

Articles