Rotating Gliding Arc: Innovative Source for VOC Remediation

J. Čech, L. Prokeš, M. Zemánek, L. Dostál, D. Šimek, J. Valenta, R. Žebrák, L. Zápotocký, P. Sťahel

Abstract


The large-scale plasma treatment of waste gas in industrial or municipal conditions requires high efficiency of plasma conversion process at high processing speed, i.e., large volumetric flow. The integration of the plasma unit into existing systems puts demands on the pipe-system compatibility and minimal pressure drop due to adoption of plasma processing step. These conditions are met at the innovative rotating electrode gliding arc plasma unit described in this article. The system consists of propeller-shaped high voltage electrode inside grounded metallic tube. The design of HV electrode eliminates the pressure drop inside the air system, contrary the plasma unit itself is capable of driving the waste gas at volumetric flow up to 300 m3/hr for 20 cm pipe diameter. In the article the first results on pilot study of waste air treatment will be given for selected volatile organic compounds together with basic characteristic of the plasma unit used.

Keywords


gliding arc; rotating electrode; waste gas; VOC decomposition; plasma diagnostics

References


Y. P. Raizer. Gas Discharge Physics. Berlin: Springer Verlag, 1991.

S. D. Raezer. Arc apparatus employing three dimensional arc motion and dynamic balancing, 1966. Patent No.: US 3,416,021.

H. Lesueur, A. Czernichowski, and J. Chapelle. Dispositif de génération de plasmas basse température par formation de décharges électriques glissantes, 1988. Patent No.: FR 2639172.

H. Lesueur, A. Czernichowski, and J. Chapelle. Électro-brûleurs à arcs glissants. Journal de Physique Colloques, 51(C5):C5–57–C5–64, 1990. doi:10.1051/jphyscol:1990508.

A. Fridman, S. Nester, L. Kennedy, A. Saveliev, and O. Mutaf-Yardimci. Gliding arc gas discharge. Progress in Energy and Combustion Science, 25(2):211–231, 1999. doi:10.1016/S0360-1285(98)00021-5.

A. Czernichowski. Gliding arc: Applications to engineering and environment control. Pure and Applied Chemistry, 66(6):1301–1310, 1994. doi:10.1351/pac199466061301.

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle. Physical study of a gliding arc discharge. Journal of Applied Physics, 79(5):2245–2250, 1996. doi:10.1063/1.361188.

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter. Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge. AIAA Journal, 44(1):142–150, 2006. doi:10.2514/1.17018.

M. McNall and S. Coulombe. Characterization of a rotating gliding arc in argon at atmospheric pressure. Journal of Physics D: Applied Physics, 51(44):445203, 2018. doi:10.1088/1361-6463/aade44.

M. Ramakers, J. A. Medrano, G. Trenchev, F. Gallucci, and A. Bogaerts. Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion. Plasma Sources Science and Technology, 26(12):125002, 2017. doi:10.1088/1361-6595/aa9531.

P. Stahel, Z. Navratil, M. Zemanek, and M. Cernak. A method of generating low-temperature plasma, a method of plasma modification of liquid, powder, and solid materials with this low-temperature plasma, and a device for carrying out these methods, 2016. Patent application No.: WO2016177353A1.

P. Stahel, Z. Navratil, M. Cernak, and M. Zemanek. Method of generating low-temperature plasma, plasma treatment process of fluids, powder materials and solid substances by making use of such low-temperature plasma and apparatus for aking the same, 2015. Patent No.: CZ2015310A3.

L. Potočňáková, J. Šperka, P. Zikán, J. J. W. A. Van Loon, J. Beckers, and V. Kudrle. Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions. Plasma Sources Science and Technology, 26(4):045014, 2017. doi:10.1088/1361-6595/aa5ee8.


Refbacks

  • There are currently no refbacks.