Impact of the Metal Evaporation Rate in Vacuum Interrupters on Vapor Expansion and Deposition in Vacuum

Authors

  • A. E. Geisler Siemens Corporate Technology
  • N. Wenzel Siemens Corporate Technology

DOI:

https://doi.org/10.14311/ppt.2019.2.165

Keywords:

vacuum interrupter, DSMC method, vapour deposition, insulator coating, vacuum arc

Abstract

The emission of contact material into vacuum after switching operation of a vacuum interrupter is crucial for the metallisation of the ceramic surfaces. This work focuses on the simulation of various regimes of metal vapour pressure using an extended version of an existing DSMC code that now allows the visualisation of the interaction types and locations during the vapour expansion. The model was applied to a typical vacuum interrupter geometry at different current levels between 3 A and 100 kA. The simulations show that in the low current case the likelihood for a particle hitting a ceramic surface can be more than a factor of 5 higher than in the high current case. An explanation of this observation will be given by analysing the interaction history of the respective particles.

References

P. Slade. The Vacuum Interrupter: Theory, Design, and Application. 1st Edition. CRC Press, Taylor and Francis Group, London, 2008.

H. Fink, D. Gentsch, and M. Heimbach. Condensed metal vapor on alumina ceramic in vacuum interrupters. IEEE Trans. Dielectr. Electr. Insul., 9(2), 2002. doi:10.1109/94.993736.

B. Kuehn, M. Kurrat, M. Hilbert, I. Gramberg, and D. Gentsch. Characterization of metal vapor deposition on vacuum interrupter ceramics and its impact on electric field distribution. IEEE Trans. Dielectr. Electr. Insul., 24(6), 2017. doi:10.1109/TDEI.2017.006486.

H. Schellekens and J. Battandier. Metal vapor deposition on ceramic insulators and vacuum interrupter lifetime prediction. In Proc. 19th Inter’nl Symp. on Disch. and Electr. Insulation in Vac., volume 1, 2000. doi:10.1109/DEIV.2000.877270.

I. S. Gramberg, M. Kurrat, and D. Gentsch. Investigations of copper chrome coatings on vacuum circuit breaker ceramics by electron probe microanalysis and electric field simulation. IEEE Transactions on Plasma Science, 41, 2013. doi:10.1109/TPS.2013.2273260.

B. Kuehn, M. Kurrat, M. Hilbert, and D. Gentsch. Multiple shield arrangements breakdown model in vacuum interrupters. In 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), volume 2, pages 1–4, 2016. doi:10.1109/DEIV.2016.7763948.

M. Kurrat. Vacuum arc ion flux from vacuum interrupter contact gap. Plasma Physics and Technology Journal, 4, 2017. doi:10.14311/ppt.2017.2.186.

E. D. Taylor. Application of research in field emitter arrays to the breakdown of contacts in vacuum. In 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), pages 41–44, 2012. doi:10.1109/DEIV.2012.6412445.

G. Bird. Approach to translational equilibrium in a rigid sphere gas. Physics of Fluids, 6, 1963. doi:10.1063/1.1710976.

A. Geisler and N. Wenzel. Metal vapor deposition in vacuum interrupters: Utilization of dsmc methods and considerations on vapor sources. 28th International Symposium on Discharges and Electrical Insulation in Vacuum, 2, 2018. doi:10.1109/DEIV.2018.8537030.

G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Number Bd. 1 in Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, 1994.

T. Scanlon, E. Roohi, C. White, M. Darbandi, and J. Reese. An open source, parallel dsmc code for rarefied gas flows in arbitrary geometries. Computers and Fluids, 39, 2010. doi:10.1016/j.compfluid.2010.07.014.

K. Hencken. Investigation of metallic vapor condensation in a vacuum interrupter using dsmcfoam. 9th OpenFOAM Workshop, Zagrep, Croatia, 2014.

K. Koura and H. Matsumoto. Variable soft sphere molecular model for air species. Physics of Fluids A: Fluid Dynamics, 4(5), 1992. doi:10.1063/1.858262.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 1998. doi:10.1063/1.168744.

G. Farrall, F. Hudda, and J. Toney. The time-resolved characterization of erosion products from high-current, copper vacuum arcs. Plasma Science, IEEE Transactions on, 11, 1983. doi:10.1109/TPS.1983.4316240.

J. Kutzner, R. Batura, and Z. Stachowiak. Experimental analysis of the electrode products emitted by high-current vacuum arcs. IEEE Trans. Plasma Sci., 27(4), 1999. doi:10.1109/27.782255.

M. B. Schulman, P. G. Slade, and J. A. Bindas. Effective erosion rates for selected contact materials in low-voltage contactors. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 18(2), 1995. doi:10.1109/95.390312.

Downloads

Published

2019-09-10

Issue

Section

Articles