Determining the Time Constant of Arcs at Arbitrary Current Levels

Authors

  • L. S. J. Bort ETH Zürich
  • T. Schultz
  • C. M. Franck

DOI:

https://doi.org/10.14311/ppt.2019.2.175

Keywords:

switching arc, gas circuit breakers, black-box model, arc time constant

Abstract

For the development and optimization of gas circuit breakers and switchgear, a detailed understanding of the arc related processes is of great importance. Ideally, analytical or numerical models with predicitive capability can be found and used during the design process preceding costly and time-consuming experiments.

In the present contribution, we report on a novel measurement and evaluation technique to determine the thermal arc time constant ("thermal inertia") that is commonly used in simple black-box models to describe the arc's dynamical properties. The method is introduced and applied to example arcs under varying blow gas conditions in air.

References

A. N. Greenwood and T. H. Lee. Theory and application of the commutation principle for hvdc circuit breakers. IEEE PAS, PAS-91(4):1570–1574, July 1972. doi:10.1109/TPAS.1972.293310.

T. Schultz et al. Improving interruption performance of mechanical circuit breakers by controlling pre-current-zero wave shape. IET High Voltage, pages 1–9, apr 2019. doi:10.1049/hve.2018.5103.

J. Schwarz. Berechnung von Schaltvorgängen mit einer zweifach modifizierten Mayr-Gleichung. Dissertation, Technische Hochschule Darmstadt, 1973.

R. Amsinck. Verfahren zur Ermittlung des Ausschaltverhalten bestimmender Lichtbogenkenngrössen. ETZ-A, 98:566, 1977.

H. Rijanto. Ein experimentelles Verfahren zur Bestimmung von Lichtbogenkenngrößen - Stromüberlagerungsverfahren. Dissertation, Technische Universität Hannover, 1975.

R. Ruppe. Experimentelle und theoretische Untersuchungen am axial beströmten Wechselstromlichtbogen vor dem Stromnulldurchgang. Dissertation, TH Illmenau, 1979.

H. Drebenstedt et al. Ein verbessertes Verfahren zur Bestimmung der charakteristischen Funktionen des Zweipolmodells für Schaltlichtbögen. Internat. Wiss. Kolloquium, TH Ilmenau, 28, 1983.

M. M. Walter, C. Leu, and C. M. Franck. Optimizing the Arc Characteristics for Improved Designs of Passive Resonant Hvdc-Circuit Breakers. In XXth Symposium on Physics of Switching Arc, pages 317–322, 2013. doi:10.3929/ethz-b-000078010.

M. M. Walter. Switching Arcs in Passive Resonance HVDC Circuit Breakers. PhD thesis, ETH Zürich, 2013. doi:10.3929/ethz-a-010112102.

O. Mayr. Beiträge zur Theorie des statischen und des dynamischen Lichtbogens. Archiv für Elektrotechnik, 37(12):588–608, dec 1943. doi:10.1007/BF02084317.

A. N. Cassie. Arc rupture and circuit severity: a new theory. CIGRE-Report, 102:1–16, 1939.

U. Habedank. Application of a new arc model for the evaluation of short-circuit breaking tests. IEEE PWRD, 8(4):1921–1925, 1993. doi:10.1109/61.248303.

P. H. Schavemaker and L. van der Sluis. An improved Mayr-type arc model based on current-zero measurements [circuit breakers]. IEEE PWRD, 15(2):580–584, apr 2000. doi:10.1109/61.852988.

M. Kapetanović. High voltage circuit breakers. ETF - Faculty of Eletrotechnical Engineering, Sarajevo, Sarajevo, 2011.

K. Nakanishi. Switching Phenomena in High-Voltage Circuit Breakers. Marcel Dekker Inc., New York, NY, 1st edition, 1991.

A. Khakpour et al. An Improved Arc Model Based on the Arc Diameter. IEEE PWRD, 31(3):1335–1341, jun 2016. doi:10.1109/TPWRD.2015.2473677.

A. Ritter, L. S. J. Bort, and C. M. Franck. Five years of pulsed current testing for HVDC switchgear. In 2016 IEEE ICHVE Conference, pages 1–4. IEEE, sep 2016. doi:10.1109/ICHVE.2016.7800658.

Downloads

Published

2019-09-10

Issue

Section

Articles