Arc Modeling in Industrial Applications

Authors

  • Ch. Ruempler Eaton Industries GmbH
  • R. Chechare Eaton India Innovation Center
  • A. Zacharias Eaton Industries GmbH

DOI:

https://doi.org/10.14311/ppt.2019.2.200

Keywords:

arc interruption modeling, molded case circuit breaker, debris transport, blow-out cooling, surge arrester

Abstract

Simulation methods are routinely applied in the design and development process of power distribution devices. Arcing phenomena that occur during switching operations or fault events are modeled to optimize device performance and gain deeper insights into the behavior that testing cannot easily provide. In this contribution, some applications are presented in detail. The first example describes the distribution of debris that is generated inside a molded case circuit breaker (MCCB) during short-circuit interruption. A model is used to analyze the debris transport and to derive a solution to address issues caused by the debris. Second application example is a cooling device for hot plasma gases vented by circuit breakers. A model driven design process helps to define the device dimensions to achieve a safe temperature level of the exhaust gases. The third example deals with short-circuit behavior of a hollow core high voltage surge arrester, comparing model and experimental results.

Author Biography

Ch. Ruempler, Eaton Industries GmbH

Chief Engineer

References

A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modelling. Journal of Physics D: Applied Physics, 38(9):R153, 2005. doi:10.1088/0022-3727/38/9/R01.

C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. Dissertation, Technische Universität Ilmenau, 2009.

ANSYS ® Fluent and ANSYS ® Emag. Release 19.1, ANSYS, Inc., 2018.

MpCCI ®-E Manual. 2018, Fraunhofer Institute SCAI, Sankt Augustin, 2018.

C. Rümpler, H. Stammberger, and A. Zacharias. Low-voltage arc simulation with out-gassing polymers. In 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), pages 1–8, Sept 2011. doi:10.1109/HOLM.2011.6034770.

Low-voltage switchgear and controlgear – Part 2: Circuit–breakers. IEC Standard 60947-2, The International Electrotechnical Commission, 2016.

C. Rümpler, B. J. Schaltenbrand, A. L. Gottschalk, R. P. Malingowski, K. J. McCarthy, and X. Zhou. Electrical switching apparatus and debris barrier therefor. U.S. Patent 10 128 069, Nov 2018.

Y. Tanaka. Influence of copper vapor contamination on dielectric properties of hot air at 300–3500 K in atmospheric pressure. IEEE Transactions on Dielectrics and Electrical Insulation, 12(3):504–512, June 2005. doi:10.1109/TDEI.2005.1453455.

V. R. T. Narayanan, J. V. R. Heberlein, and C. Rümpler. The influence of metallic and plastic vapors on dielectric breakdown for low-voltage circuit breaker after current-zero. In 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013), pages 313–318, Sep 2013. doi:10.1109/HOLM.2013.6651435.

Low-voltage switchgear and controlgear assemblies – Part 1: General rules. IEC Standard 61439-1, The International Electrotechnical Commission, 2011.

Surge arresters – Part 4: Metal–oxide surge arresters without gaps for a.c. systems. IEC Standard 60099-4, The International Electrotechnical Commission, 2014.

J. Ozawa, A. Mizukoshi, S. Maruyama, K. Nakano, K. Saito, G. St-Jean, Y. Latour, and A. Petit. Pressure relief design and performance of metal oxide surge arresters. IEEE Transactions on Power Delivery, 1(1):151–156, Jan 1986. doi:10.1109/TPWRD.1986.4307901.

Downloads

Published

2019-09-10

Issue

Section

Review Papers