Axial Blast Type Discharge Chamber with Moving Electrode

Authors

  • M. E. Pinchuk Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences
  • A. V. Budin Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences
  • N. K. Kurakina Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences
  • A. G. Leks Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences

DOI:

https://doi.org/10.14311/ppt.2019.3.227

Keywords:

high-current high-pressure arc, high-current circuit breaker

Abstract

The paper presents some results concerning electrophysical and gas-dynamics parameters of high-curent arc in axial blast discharge chamber. The experimental stand and numerical model were modified for axial gas flow type. Some design changes are described in the paper. The experiments were carried out for gas pressures of 1.0-6.0 MPa with current amplitude of 25-150 kA. The current half-period was of 1.0-10.0 ms. The contacts moved apart to the distance of 3-4 cm due to gas pressure boost in the chamber. OpenFOAM package with the library swak4foam was used for numerical simulation.

Author Biography

M. E. Pinchuk, Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences

accompanying person Marina Pinchuk

References

V. Ignatov, M. Misrikhanov, and A. Shuntov. Concerning construction decisions for short circuit current limitation in power system. Proceedings of RAS. Power Engineering, (5):94–103, 2009.

A. Aleksandrov and V. Zhukov. Restruction of short circuit currents in the high voltage distribution networks of developing power systems. Vestnik MEI, 58(2):58–66, 2012.

Current Zero Club. www.currentzeroclub.org.

P. Glaubitz, S. Stangherlin, J. Biasse, F. Meyer, M. Dallet, M. Pruefert, R. Kurte, T. Saida, K. Uehara, P. Prieur, H. Ito, E. Kynast, A. Janssen, R. Smeets, and D. Dufournet. CIGRE position paper on the application of SF6 in transmission and distribution networks. Electra, 34(274):34–39, 2014.

M. Seeger, R. Smeets, et al. Recent trends in development of high voltage circuit breakers with SF6 alternative gases. Plasma Physics and Technology, 4(1):8–12, 2017. doi:10.14311/ppt.2017.1.8.

M. Eves. A Literature review on SF6 gas alternatives for use on the distribution network. Western Power Distribution, 2018.

M. E. Pinchuk, A. V. Budin, I. I. Kumkova, and A. N. Chusov. Studying energy evolution in the discharge chamber of a multichamber lightning protection system.

Technical Physics Letters, 42(4):395–398, 2016. doi:10.1134/S1063785016040222.

M. Pinchuk, A. Budin, I. Kumkova, A. Bogomaz, A. Sivaev, A. Chusov, and R. Zaynalov. Energy deposition in discharge chamber of lightning protection multichamber system. Journal of Physics: Conference Series, 774(1):012187, 2016. doi:10.1088/1742-6596/774/1/012187.

A. Chusov, E. Rodikova, M. Murmann, H. Nordborg, and R. Fuchs. A review of progress towards simulation of arc quenching in lightning protection devices based on multi chamber systems. Plasma Physics and Technology, 4(3):273–276, 2017. doi:10.14311/ppt.2017.3.273.

P. G. Rutberg, A. A. Safronov, A. V. Surov, A. V. Pavlov, S. D. Popov, V. A. Spodobin, and A. P. Rutberg. Spectral investigations of electric arc alternating current plasma generators with power to 600 kW. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 13(2):195–203, 2009. doi:10.1615/HighTempMatProc.v13.i2.80.

A. Surov, S. Popov, V. Popov, D. Subbotin, E. Serba, V. Spodobin, G. Nakonechny, and A. Pavlov. Multi-gas ac plasma torches for gasification of organic substances. Fuel, 203:1007–1014, 2017. doi:10.1016/j.fuel.2017.02.104.

P. Rutberg. Physics and Technology of High Current Discharges in Dense Gas Media and Flows. Nova Science Publishers, 2009.

V. Kolikov, A. Bogomaz, and A. Budin. Powerful Pulsed Plasma Generators: Research and Application. Springer Nature, 2018. doi:10.1007/978-3-319-95249-9.

C. Flurscheim. Power Circuit Breaker Theory and Design. The Institution of Engineering and Technology, 2008. doi:10.1049/PBPO001E.

A. V. Budin, M. E. Pinchuk, V. E. Pilschikov, A. G. Leks, and V. V. Leont’ev. An experimental stand for investigating protective devices for high-voltage overhead lines. Instruments and Experimental Techniques, 59(5):673–677, 2016. doi:10.1134/S0020441216040163.

A. Budin, M. Pinchuk, V. Kuznetsov, V. Leont’ev, and N. Kurakina. Experimental stand for investigations of arc and erosion processes in high-voltage powerful breaker. Instruments and Experimental Techniques, 60(6):837–842, 2017. doi:10.1134/S0020441217060033.

A. V. Budin, M. E. Pinchuk, V. V. Leontev, A. G. Leks, N. K. Kurakina, A. A. Kiselev, J. V. Simakova, and V. Y. Frolov. Experimental stand for investigations of insulator degradation and electrode erosion in high-current breaker. Plasma Physics and Technology, 4(2):120–123, 2017. doi:10.14311/ppt.2017.2.120.

A. V. Budin, M. E. Pinchuk, V. E. Kuznetsov, and F. G. Rutberg. The influence of the production technology of iron-copper composite alloy on its erosion properties in a high-current high-pressure arc. Technical Physics Letters, 40(12):1061–1064, 2014. doi:10.1134/S1063785014120050.

A. V. Budin, M. E. Pinchuk, and N. K. Kurakina. Erosion characteristics of copper-based composite electrodes in an electric arc of variable length with transverse gas blowing. Technical Physics Letters, 44(9):808–810, 2018. doi:10.1134/S1063785018090171.

N. Kurakina, M. Pinchuk, A. Budin, A. Smirnovsky, and V. Frolov. Numerical simulation using OpenFOAM of gas-dynamics in the discharge chamber with a movable electrode. St. Petersburg polytechnic university journal of engineering science and technology, 24(2):69–81, 2018. doi:10.18721/JEST.240206.

N. Kurakina, M. Pinchuk, A. Budin, and A. Smirnovsky. Analysis of the gas dynamics in the discharge chamber with a movable electrode. Journal of Physics: Conference Series, 1135(1):012094, 2018. doi:10.1088/1742-6596/1135/1/012094.

Downloads

Published

2019-11-29

Issue

Section

Articles