Utilisation of the High Speed Camera for the Pin-hole Discharge Diagnostics

Authors

  • Z. Kozakova Faculty of Chemistry, Brno University of Technology, Purkyňnova 118, 612 00 Brno
  • F. Krcma Faculty of Chemistry, Brno University of Technology, Purkyňnova 118, 612 00 Brno
  • L. Drimalkova Faculty of Chemistry, Brno University of Technology, Purkyňnova 118, 612 00 Brno
  • L. Hlochova Faculty of Chemistry, Brno University of Technology, Purkyňnova 118, 612 00 Brno

DOI:

https://doi.org/10.14311/ppt.2017.1.20

Keywords:

discharge in liquid, pin-hole discharge, high speed camera, plasma diagnostics

Abstract

The high speed camera was utilised for plasma diagnostics of the DC pin-hole discharge in electrolyte solutions. Two discharge modes were determined. Plasma channels were observed either in the bubble or outside the bubble in the bulk solution, which confirms both thermal and electron theory of the discharge ignition in liquid. In the diaphragm discharge, plasma streamers were better visible on the cathode side of the dielectric barrier because they formed significantly longer channels.

References

P. Lukeš et al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis. Res. Chem. Intermed., 31(4-6):285–294, 2005. doi:10.1163/1568567053956734.

M. Klíma et al. Hf plasma pencil and dc diaphragm discharge in liquids - diagnostics and applications. Czech J. Phys., 56:B1051–B1056, 2006. doi:10.1007/s10582-006-0325-x.

K.R. Stalder et al. Electrosurgical plasmas. J. Phys. D: Appl. Phys., 38:1728–1738, 2005. doi:10.1088/0022-3727/38/11/014.

M.J. Kirkpatrick and B.R. Locke. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind. Eng. Chem. Res., 44(12):4243–4248, 2005. doi:10.1021/ie048807d.

P. Šunka et al. Potential applications of pulse electrical discharges in water. Acta Physica Slovaca, 54(2):135–145, 2004.

F. De Baerdemaeker et al. Characteristics of ac capillary discharge produced in electrically conductive water solution. Plasma Source Sci. Technol., 16:341–354, 2007. doi:10.1088/0963-0252/16/2/018.

M. Sato et al. Decoloration of dyes in aqueous solution by pulsed discharge plasma in water through the pinhole. Transaction of the institute of fluid-flow machinery, (107):95–100, 2000.

Z. Stará et al. Organic dye decomposition by dc diaphragm discharge in water: Effect of solution properties on dye removal. Desalination, 239(1-3):283–294, 2009. doi:10.1016/j.desal.2008.03.025.

F. Krčma et al. Diaphragm discharge in liquids: Fundamentals and applications. J. Phys.- Conf. Series, 207:012010(6 pages), 2010. doi:10.1088/1742-6596/207/1/012010.

R.P. Joshi et al. Electrical network-based time-dependent model of electrical breakdown in water. J. Appl. Phys., 92(10):6245–6251, 2002. doi:10.1063/1.1515105.

Z. Kozáková et al. Diagnostics of electrical discharges in electrolytes: Influence of electrode and diaphragm configuration. Book of Contributed Papers: 18th Symposium on Application of Plasma Processes and Workshop on Plasmas as a Planetary Atmospheres Mimics, pages 83–87, 2011.

L. Hlavatá et al. Influence of electrode configuration on dc diaphragm discharge breakdown in electrolyte solution. J. Phys.- Conf. Series, 768:012007–1(4 pages), 2016. doi:10.1088/1742-6596/768/1/012018.

A. Nikiforov et al. The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Sci. Technol., 20:015014, 2011. doi:10.1088/0963-0252/20/1/015014.

I.P. Kuzhekin. Corona electrodeless discharge in water. Proceedings of 9th International Symposium on High Voltage Engineering, pages 8073–1–8073–3, 1995.

Downloads

Published

2017-10-15

Issue

Section

Articles