Plasma Assisted Generation of Micro- and Nanoparticles

Authors

  • A. Veklich Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv
  • A. Lebid Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv
  • T. Tmenova Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv
  • V. Boretskij Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv
  • Y. Cressault Université de Toulouse; UPS, INPT; LAPLACE Laboratoire Plasma et Conversion d’Energie); 118 route de Narbonne, F-31062 Toulouse Cedex 9
  • F. Valensi Université de Toulouse; UPS, INPT; LAPLACE Laboratoire Plasma et Conversion d’Energie); 118 route de Narbonne, F-31062 Toulouse Cedex 9
  • K. Lopatko National University of Life and Environmental Sciences of Ukraine, Kiev
  • Y. Aftandilyants National University of Life and Environmental Sciences of Ukraine, Kiev

DOI:

https://doi.org/10.14311/ppt.2017.1.28

Keywords:

molybdenum trioxide, plasma evaporation, underwater spark discharge, colloidal liquids

Abstract

In this research, the peculiarities of micro- and nanoparticles generation are considered. Two techniques of micro- and nanoparticles' formation using electric arc and underwater discharge plasma sources are proposed. Molybdenum oxide crystals were deposited on side surface of the bottom electrode (anode) of the free-burning discharge between metallic molybdenum electrodes. Friable layer of MoO3, which consists of variously oriented transparent prisms and platelets (up to few hundreds of $mu;m in size), was formed by vapor deposition around the electrode. In the second technique, plasma of the underwater electric spark discharges between metal granules was used to obtain stable colloidal solutions with nanoparticles of 20-100 nm sizes.

References

P. Badica. Preparation through the vapor transport and growth mechanism of the first-order hierarchical structures of MoO3 belts on siliminite fiber. Crystal growth and design, 7(4):794–801, 2007. doi:10.1021/cg060893s.

A Laviña, J.A. Aznårez, and C. Ortiz. Electron microscopy study of some molybdenum oxide crystals. Journal of Crystal Growth, 48:100–106, 1980. doi:10.1016/0022-0248(80)90198-0.

D. Mariotti, T. Belmonte, J. Benedikt, T. Velusamy, G. Jain, and V. S˘vr˘cek. Low-temperature atmospheric pressure plasma processes for "green" third generation photovoltaics. Plasma Processes and Polymers, 13:70–90, 2016. doi:10.1002/ppap.201500187.

W. Li, F. Cheng, Z. Tao, and J. Chen. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J. Phys. Chem. B, 110:119–124, 2006. doi:10.1021/jp0553784.

D. Mariotti, H. Lindstrom, A. Chandra Bose, and K. Ostrikov. Monoclinic α-MoO3 nanosheets produced by atmospheric microplasma: application to lithium-ion batteries. Nanotechnology, 19:49530, 2008. doi:10.1088/0957-4484/19/49/495302.

K. T. Queeney and C. M. Friend. Site-selective surface reactions: hydrocarbon oxidation processes on oxidized Mo(110). J. Phys. Chem. B, 104:409–415, 2000. doi:0.1021/jp991994m.

E Comini, G Faglia, G Sberveglieri, C Cantlini, M Passacantando, S Santucci, Y Li, W Wlodarski, and W Qu. Carbon monoxide response of molybdenum oxide thin films deposited by different techniques. Sensors and Actuators B, 68:168–174, 2008. doi:10.1016/S0925-4005(00)00484-6.

N. Taran, O. Gonchar, and Lopatko K. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of cicer arietinum l. Nanoscale Res Lett., 9:289, 2014. doi:10.1186/1556-276X-9-289.

D. Ehrhardt and W. Frommer. New technologies for 21st century plant science. The Plant Cell, 24(2):374–394, 2012. doi:10.1105/tpc.111.093302.

A. Lebid, V. Boretskij, S. Savenok, A. Veklich, and O. Andreev. Thermal plasma source for processing of MoO3 crystals. J. Phys.: Conf. Ser., 550:012027, 2014. doi:10.1088/1742-6596/550/1/012027.

T. Tmenova, A. Veklich, V. Boretskij, Y. Cressault, F. Valensi, K. Lopatko, and Y. Aftandilyants. Optical emission spectroscopy of plasma of underwater electric spark discharges between metal granules. Problems of Atomic Science and Technology. Series: Plasma Physics, 107(23):132–135, 2017.

Vahldiek F.W. Growth and microstructure of molybdenum oxide. Journal of the Less-Common Metals, 16:351–359, 1968. doi:10.1016/0022-5088(68)90132-X.

A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2017, May 1]. National Institute of Standards and Technology, Gaithersburg, MD., 2015.

H. Li, J. Kang, and K. Urashima. Comparison between the mechanism of liquid plasma discharge process in water and organic solution. J. Inst. Electrostat. Jpn., 37(1):22–27, 2013.

I. Babich, V. Boretskij, A. Veklich, and R. Semenyshyn. Spectroscopic data and stark broadening of cu i and ag i spectral lines: Selection and analysis. Advances in Space Research, 54:1254–1263, 2014. doi:10.1016/j.asr.2013.10.034.

Downloads

Published

2017-10-15

Issue

Section

Articles