Analysis of Radiation Discretization for Modelling a Spark Gap for Surge Currents

Authors

  • C. Sander PHOENIX CONTACT GmbH & Co. KG, Flachsmarktstraße 8, D-32825 Blomberg Institute for High Voltage Technology and Electrical Power Systems, Technical University Braunschweig, Schleinitzstraße 23, 38106 Braunschweig
  • J.-E. Schmutz PHOENIX CONTACT GmbH & Co. KG, Flachsmarktstraße 8, D-32825 Blomberg
  • M. Kurrat Institute for High Voltage Technology and Electrical Power Systems, Technical University Braunschweig, Schleinitzstraße 23, 38106 Braunschweig

DOI:

https://doi.org/10.14311/ppt.2017.1.56

Keywords:

spark gap, radiation, spectral, simulation, arc, surge protective device

Abstract

In this paper we address a method for spectrally resolved radiation modelling in thermal plasmas encountered in surge protective devices based on spark gaps. Compared to most switching applications, power input and plasma pressure are much higher which leads to an optically thick plasma with line broadening and enhanced wall ablation. In this situation it is possible to capture the full effect of spectrally resolved radiation on plasma dynamics by performing line-by-line calculations with downsampled absorption spectra. We show that it is possible to achieve radiation convergence with 1000 lines. Approaches for a further reduction of calculation times using band-averaged models and $\kappa$-group models are discussed. The κ-group model is based upon a grouping of the absorption coefficients into subgroups with different ranges of κ before averaging. The spectral calculation results are compared to the approximative methods and significant differences for Rosseland means are observed.

References

Phoenix Contact GmbH & Co. KG. Lightning and surge protection basics. https://www.phoenixcontact. com/assets/downloads_ed/global/web_dwl_promotion/5131327_TT_Basics_EN.pdf, 2017.

B. Peyrou et al. Radiative properties and radiative transfer in high pressure thermal air plasmas. J. Phys. D: Appl. Phys., 45(45):455203, 2012. doi:10.1088/0022-3727/45/45/455203.

H. Nordborg and A. A. Iordanidis. Self-consistent radiation based modelling of electric arcs: I. efficient radiation approximations. J. Phys. D: Appl. Phys., 41(13):135205, 2008. doi:10.1088/0022-3727/41/13/135205.

H. Z. Randrianandraina et al. Improvements of radiative transfer calculation for SF6 thermal plasmas. J. Phys. D: Appl. Phys., 44(19):194012, 2011. doi:10.1088/0022-3727/44/19/194012.

Michael F. Modest. Radiative Heat Transfer, Third Edition. Academic Press, 3 edition edition.

D. Godin et al. Modelling and simulation of nozzle ablation in high-voltage circuit-breakers. J. Phys. D: Appl. Phys., 33(20):2583, 2000. doi:10.1088/0022-3727/33/20/310.

C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. Fraunhofer-Verlag, 2009.

A. D’Angola and other. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur. Phys. J. D, 46(1):129–150, 2008. doi:10.1140/epjd/e2007-00305-4.

Lino da Silva, M. An adaptive line-by-line—statistical model for fast and accurate spectral simulations in low-pressure plasmas. J. Quant. Spectrosc. Radiat.Transfer, 108(1):106–125, 2007. doi:10.1016/j.jqsrt.2007.03.005.

H. Jasak. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean Eng., 1(2):89–94, 2009. doi:10.2478/IJNAOE-2013-0011.

M. Kraposhin et al. Adaptation of kurganov-tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci., 66:43–52, 2015. doi:10.1016/j.procs.2015.11.007.

Downloads

Published

2017-10-15

Issue

Section

Articles