Chemical and Electron Interaction Properties of Potential Gaseous Insulation and Arc-quenching Media

Authors

  • L. Zhu Department of Electrical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Rd., 200030,Shanghai
  • D. Tanand Department of Electrical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Rd., 200030,Shanghai
  • S. Zhao Department of Electrical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Rd., 200030,Shanghai
  • D. Xiao Department of Electrical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Rd., 200030,Shanghai

DOI:

https://doi.org/10.14311/ppt.2017.1.74

Keywords:

chemical property, electron interaction, insulation, arc interruption

Abstract

The global warming effects of sulphur hexafluoride (SF6) lead researchers to look for new environmentally-friendly gas media in high-voltage electrical apparatus. The present paper discusses basic chemical and electron interaction properties that brings high insulation strength and good arc interruption capability for a gas. The conclusion shows that gaseous compounds composed of elements in the upright area of periodic table of elements generally have stronger electronegative ability and good electrical properties. And double bond or triple bond in gas molecule can effectively improve the dielectric strength. For gas mixtures, good cooperation of gases will generate synergetic effect, which makes its dielectric strength higher than the weighted average value of each gas. Some aspects in searching for new arc interruption media are also discussed.

References

Z. S. Zhang, D. M. Xiao, X. L. Liu, W. J. Wang, and Y. A. Wang. Analysis of the insulation characteristics of c-C4F8/CO2 gas mixtures by the monte carlo method. Journal of Physics D: Applied Physics, 41(1):015206, 2008. doi:10.1088/0022-3727/41/1/015206.

WMO Greenhouse Gas Bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2014. [2015-11-09].

L. L. Zhu, X. G. Li, and D. M. Xiao. Electron transport coefficients in SF6 and xenon gas mixtures. Journal of Physics D: Applied Physics, 33(23):L145, 2000. doi:10.1088/0022-3727/33/23/102.

L. L. Zhu, Y. Z. Chen, and D. M. Xiao. Electron swarm parameters in and helium gas mixtures. Journal of Physics D: Applied Physics, 32(5):L18, 1999. doi:10.1088/0022-3727/32/5/004.

A. R. Ravishankara, R. R. Garcia, S. Solomon, and J. B. Burkholder. Ozone depletion and global warming potentials of CF3I. Journal of Geophysical Research, 99(D10):20929, 1994. doi:10.1029/94JD01833.

W. S. Harwood, R. H. Petrucci, and F. G. Herring. General Chemistry Principles and Modern Applications. 8th printing,Eighth Edition. Upper Saddle River, New Jersey, New Jersey: Prentice-Hall Inc., 2002.

P. Atkins and L. Jones. Chemistry Molecules, Matter, and Change. 3rd printing. New York: W. H. Freeman and Company, 1997.

A. Heylen. Electric strength, molecular structure, and ultraviolet spectra of hydrocarbon gases. The Journal of Chemical Physics., 29(4):813–819, 1958. doi:10.1063/1.1744595.

A. Heylen and T. Lewis. The electric strength and molecular structure of hydrocarbon gases. Canadian Journal of Physics, 36(6):721–739, 1958. doi:10.1139/p58-079.

J. Devins and R. Crowe. Electric strength of saturated hydrocarbon gases. The Journal of Chemical Physics., 25(5):1053–1058, 1956. doi:10.1063/1.1743096.

J. Devins. Replacement gases for sf6. IEEE Transactions on Electrical Insulation., EI-15(2):81–86, 1980. doi:10.1109/TEI.1980.298243.

M. Yoshida, T. Ogawa, H. Kojima, O. Kinoshita, N. Hayakawa, F. Endo, and H. Okubo. Breakdown characteristics of N2O gas mixtures for quasiuniform electric field under lightning impulse voltage. IEEE Transactions on Dielectrics and Electrical Insulation., 14(6):1492–1497, 2007. doi:10.1109/TDEI.2007.4401233.

J. Zhong, M. Fang, J. Liu, Q. Zhang, and J. Yan. Analysis of the characteristics of dc nozzle arcs in air and guidance for the search of SF6 replacement gas. Journal of Physics D: Applied Physics, 49(43):435201, 2016. doi:10.1088/0022-3727/49/43/435201.

D.T. Tuma. A comparison of the behavior of SF6 and N2 blast arcs around current zero. IEEE Transactions on Power Apparatus and Systems., PAS-99(6):2129–2137, 1980. doi:10.1109/TPAS.1980.319791.

H. Katagiri, H. Kasuya, H. Mizoguchi, and S. Yanabu. Investigation of the performance of CF3I gas as a possible substitute for SF6. IEEE Transactions on Dielectrics and Electrical Insulation., 15(5):1424–1429, 2008. doi:10.1109/TDEI.2008.4656252.

Y. Cressault, V. Connord, H. Hingana, P. Teulet, and A. Gleizes. Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers. Journal of Physics D: Applied Physics., 44(49):495202, 2011. doi:10.1088/0022-3727/44/49/495202.

H. Kasuya, Y. Kawamura, H. Mizoguchi, Y. Nakamura, S. Yanabu, and N. Nagasaki. Interruption capability and decomposed gas density of CF3I as a substitute for SF6 gas. IEEE Transactions on Dielectrics and Electrical Insulation., 17(4):1196–1203, 2010. doi:10.1109/TDEI.2010.5539690.

Downloads

Published

2017-10-15

Issue

Section

Articles