Evolution of the Cathode Spot Distribution in an Axial Magnetic Field Controlled Vacuum Arc at Long Contact Gap

Authors

  • B. Tezenas du Montcel Institut Jean Lamour - UMR 7198 CNRS/Université de Lorraine, Laboratoire d’Excellence DAMAS, CS 50840, 54011 Nancy Cedex SuperGrid Institute SAS, 130 rue Léon Blum, BP1321, 69611 Villeurbanne
  • P. Chapelle Institut Jean Lamour - UMR 7198 CNRS/Université de Lorraine, Laboratoire d’Excellence DAMAS, CS 50840, 54011 Nancy Cedex
  • A. Jardy Institut Jean Lamour - UMR 7198 CNRS/Université de Lorraine, Laboratoire d’Excellence DAMAS, CS 50840, 54011 Nancy Cedex
  • C. Creusot SuperGrid Institute SAS, 130 rue Léon Blum, BP1321, 69611 Villeurbanne

DOI:

https://doi.org/10.14311/ppt.2017.1.99

Keywords:

vacuum arc, axial magnetic field, long gap, cathode spot distribution, experimental study

Abstract

The distribution of cathode spots in a CuCr25 vacuum arc controlled by an axial magnetic field and ignited on the lateral surface of the cathode is investigated for long gap distances, from the processing of high-speed video images. The processing method includes also estimating the current carried by a single spot and reconstructing the distribution of the current density at the cathode. Various distributions depending partly on the arc current are described.

References

P. Picot. Vacuum switching. Technical Report 198, Schneider Electric, 2000.

X. Song, Z. Shi, C. Liu, S. Jia, and L. Wang. Influence of AMF on the expansion speed of cathode spots in high-current triggered vacuum arc. IEEE Trans. Plasma Sci., 41(8):2061–2067, 2013. doi:10.1109/TPS.2013.2248759.

L. Wang, S. Jia, Z. Shi, and M. Rong. Numerical simulation of vacuum arc under different axial magnetic fields. J. Phys. D: Appl. Phys., 38(7):1034–1041, 2005. doi:10.1088/0022-3727/38/7/011.

V.P. Afanas’ev, A.M. Chaly, A.A. Logatchev, S.M. Shkol’nik, and K.K. Zabello. Computer-aided reconstruction of the cathode images obtained by high speed in high photography of high current vacuum arcs. IEEE Trans. Plasma Sci., 29(5):695–699, 2001. doi:10.1109/27.964456.

A.M. Chaly, A.A. Logatchev, K.K. Zabello, and S.M. Shkol’nik. High-current vacuum arc appearance in nonhomogeneous axial magnetic field. IEEE Trans. Plasma Sci., 31(5):884–889, 2003. doi:10.1109/TPS.2003.818414.

Z. Shi, S. Jia, X. Song, Z. Liu, H. Dong, and L. Wang. The influence of axial magnetic field distribution on high-current vacuum arc. IEEE Trans. Plasma Sci.,

(8):1446–1451, 2009. doi:10.1109/TPS.2009.2019097.

A.M. Chaly, K.K. Logatchev, A.A. Zabello, and S.M. Shkol’nik. High-current vacuum arc in a strong axial magnetic field. IEEE Trans. Plasma Sci., 35(4):939–945, 2007. doi:10.1109/TPS.2007.901975.

B. Jüttner and I. Kleberg. The retrograde motion of arc cathode spot in vacuum. J. Phys. D: Appl. Phys., 33(12):2025–2036, 2000. doi:10.1088/0022-3727/33/16/315.

L. Yu, J. Wang, Y. Geng, G. Kong, and .Z Liu. High-current vacuum arc phenomena of nanocrystalline CuCr25 contact material. IEEE Trans. Plasma Sci.,

(6):1418–1426, 2011. doi:10.1109/DEIV.2010.5625828.

S. Jia, X. Song, Z. Shi, L. Wang, and X. Huo. Investigations on the motion of high-current vacuum-arc cathode spots under a magnetic field. IEEE Trans. Plasma Sci., 39(6):1344–1348, 2011. doi:10.1109/TPS.2011.2127492.

A.E. Robson. The motion of low-pressure vacuum arc in strong magnetic field. J. Phys. D: Appl. Phys., 11(13):1917–1923, 1978. doi:10.1088/0022-3727/11/13/014.

Downloads

Published

2017-10-15

Issue

Section

Articles