Equilibrum Composition of Thermal Plasma with Copper and Chromium Vapours Admixtures


  • M. Bartlova Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno
  • O. Coufal Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno
  • A. Veklich Faculty of Radio Physics, Electronics and Computer Systems,Taras Shevchenko National University of Kyiv
  • J. Pokorny Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno




thermal plasma, equilibrium composition, sintered Cu-Cr composites


Thermal plasma of electric arc is widely used in various technological applications: welding, cutting, lamps, spraying, protection of electrical installations, etc. Process efficiency is defined by different parameters that determine arc operation and influence the energy transfer within the medium. All energy exchanges depend on the medium, which is modified by the presence of the arc and more particularly by the appearance of new species from contact erosion. Sintered Cu-Cr composites are widely used as electrical contacts for vacuum circuit breakers. These materials take advantage of the high thermal and electrical conductivity of Cu and of the refractory and oxygen getter properties of reinforcing Cr particles. The aim of this paper is to give results of the calculation of the equilibrium composition of argon and air plasma with various admixtures of Cu and Cr.


R. A. Kornev et al. Catalytic effects of electrode materail on the silicon tetrachloride hydrogenation in RF-arc-discharge. RSC Advances, 6:99816, 2016. doi:10.1039/C6RA21023F.

P. G. Slade. Advances in material development for high power, vacuum interrupter contacts. IEEE Trans. on Components, Packaging and Manufacturing Technology-PartA, 17(1):96–106, 1994. doi:10.1109/95.296374.

L. V. Gurvich, I. V. Veyts, and C. B. Alcock (eds.). Thermodynamic Properties of Individual Substances, vol. 1-4. Hemisphere, New York, 1989, 1991.

M. W. Chase (ed.). NIST-JANAF Thermochemical Tables, vol. I and II. J.Phys. Chem. Ref. Data, Monogr. 9. NIST, Gaithersburg, Maryland, 1998.

O. Coufal, P. Sezemsky, and O. Zivny. Database system of thermodynamic properties of individual substances at high temperatures. J. Phys. D: Appl. Phys., 38(8):1265–1274, 2005. doi:10.1088/0022-3727/38/8/026.

NIST. Scientific and technical databases. arXiv:http://www.nist.gov/srd/index.html.

K. P. Huber and G. Herzberg. Constants of Diatomic Molecules. Vol. IV of Molecular Spectra and Molecular Structure. Van Nostrand, Princeton, 1979.

NIST Chemistry WebBook. NIST Standard Reference Database Number 69, June 2005 Release. arXiv:http://webbook.nist.gov.

W. R. Smith and R. W. Missen. Chemical Reactions Equilibrium Analysis: Theory and Algorithms. Wiley, New York, 1982.

W. B. White, S. M. Johnson, and G. B. Dantzig. Chemical equilibrium in complex mixtures. J. Chem. Phys., 28(5):751–755, 1958. doi:10.1063/1.1744264.

O. Coufal. Composition and thermodynamic properties of thermal plasma up to 50 kK. J. Phys. D: Appl. Phys., 40(11):3371–3385, 2007. doi:10.1088/0022-3727/40/11/018.

D. R. Lide. CRC Handbook of chemistry and physics. 88th edition. CRC Press, Boca Raton, 2007.

R. V. Semenyshyn et al. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures. Advances in Space Research, 54(7):1235–1241, 2014. doi:10.1016/j.asr.2013.11.042.

S. Fesenko et al. Properties of thermal air plasma with admixing of copper and carbon. Journal of Physics: Conference Series, 550:012008, 2014. doi:10.1088/1742-6596/550/1/012008.

I. L. Babich et al. Spectroscopic data and Stark broadening of Cu I and Ag I spectral lines: Selection and analysis. Advances in Space Research, 54(7):1254–1263, 2014. doi:10.1016/j.asr.2013.10.034.