Experimental Stand for Investigations of Insulator Degradation and Electrode Erosion in High-current Breaker

Authors

  • A. V. Budin Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186
  • M. E. Pinchuk Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186 Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya 29, St.-Petersburg 195251
  • V. V. Leontev Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186
  • A. G. Leks Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186
  • N. K. Kurakina Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186 Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya 29, St.-Petersburg 195251
  • A. A. Kiselev Institute for Electrophysics and Electric Power of Russian Academy of Sciences, Dvortsovaya nab., 18, St.-Petersburg, 191186
  • J. V. Simakova Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya 29, St.-Petersburg 195251 NE Open Joint Stock Company, Partizanskaya , 21, St.-Petersburg, 195248
  • V. Ya. Frolov Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya 29, St.-Petersburg 195251

DOI:

https://doi.org/10.14311/ppt.2017.2.120

Keywords:

high-current high-pressure gas discharge, electrode erosion, insulator degradation, high-voltage test techniques, high-current circuit breaker, high-voltage engineering

Abstract

An experimental stand for studies of electric arc, electrode erosion and insulator degradation processes in high-current circuit breakers and some preliminary experimental data is described. The setup includes a discharge chamber, a capacitive energy storage with capacitance of 0.11 F, voltage up to 10 kV, and all necessary diagnostic techniques. The stand is designed for modeling current pulse with amplitude of 3–150 kA and duration of the first half period of 1.0–3.0  ms during the process of disconnecting the ring and the pin contacts. The arc is cooled by transverse gas blowing at pressure in the chamber of 0.5–3 MPa. Acquired experimental data can be used for verification of the modelling results of the heat transfer processes in the discharge chamber. At the stand, advanced composite materials based on carbon and iron-copper pseudoalloy are studied.

References

I. V. Shishkovsky, I. A. Yadroitsev, and I. Yu. Smurov. Manufacturing three-dimensional nickel titanium articles using layer-by-layer laser-melting technology. Technical Physics Letters, 39(12):1081–1084, 2013. doi:10.1134/S1063785013120250.

V.V. Vasil’tsov, M.G. Galushkin, I.N. Ilichev, A.I. Misurov, and V.YA. Panchenko. Layer-wise metal-powder laser surfacing: Analytical theory and experiment. Engineering Journal: Science and Innovations, 2012. doi:10.18698/2308-6033-2012-6-227.

V.Ya. Frolov, G.K. Petrov, B.A. Ushin, D.V. Ivanov, and S.G. Zverev. Air-plasma technologies of spraying of coatings. In Plasma Physics and Plasma Technology VIII International Conference. Minsk, Belarus, September 17-21, 2012, pages 608–611, 2012. URL: http://ifanbel.bas-net.by/pppt-7/Proceedings.rar.

V. Frolov, D. Ivanov, and M. Shibaev. Plasma installation for TiO2 fine powder production: Mathematical simulation. Plasma Physics and Technology, 3:57–61, 2016.

A. V. Budin, M. E. Pinchuk, V. E. Pilschikov, A. G. Leks, and V. V. Leont’ev. An experimental stand for investigating protective devices for high-voltage overhead lines. Instruments and Experimental Techniques, 59(5):673–677, 2016. doi:10.1134/S0020441216040163.

M. E. Pinchuk, A. V. Budin, I. I. Kumkova, and A. N. Chusov. Studying energy evolution in the discharge chamber of a multichamber lightning protection system. Technical Physics Letters, 42(4):395–398, 2016. doi:10.1134/S1063785016040222.

A. V. Budin, M. E. Pinchuk, V. E. Kuznetsov, and F. G. Rutberg. The influence of the production technology of iron-copper composite alloy on its erosion properties in a high-current high-pressure arc. Technical Physics Letters, 40(12):1061–1064, 2014. doi:10.1134/S1063785014120050.

V.B. Kovshechnikov, N.I. Litvinov, G.V. Nakonechnyi, R.V. Ovchinnikov, and A.V. Surov. Study of the erosion resistance of copper-iron and copper-nickel electrodes. Russian journal of non-ferrous metals, 46:36–40, 2005.

A.V. Budin, M.E. Pinchuk, V.E. Kuznetsov, V.V. Leont’ev, and N.K. Kurakina. Experimental stand for investigations of arc and erosion processes in high-voltage powerful breaker. Instruments and Experimental Techniques, 60(6), 2017. in press.

Victor A. Kolikov, Mikhail E. Pinchuk, Anatoly G. Leks, and Philipp G. Rutberg. High-speed diagnostic pulsewise-periodic of electric discharge in water. Proc. SPIE, 6279:62795C–62795C–7, 2007. doi:10.1117/12.725381.

M.E. Pinchuk, A.A. Bogomaz, A.V. Budin, and P.G. Rutberg. Electrode plasma jets in powerful pulsed discharge in high-pressure gas. Plasma Science, IEEE Transactions on, 42(10):2434–2435, Oct 2014. doi:10.1109/TPS.2014.2316064.

Andor Technology. http://www.andor.com.

Downloads

Published

2017-02-11

Issue

Section

Articles