Advanced Nonequilibrium Modelling of DC Tungsten-Inert Gas Arcs

Authors

  • M. Baeva Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald

DOI:

https://doi.org/10.14311/ppt.2017.3.203

Keywords:

nonequilibrium, arc plasma, magnetohydrodynamic model, diffusion, plasma-electrode interaction

Abstract

The paper is concerned with the state-of-the-art nonequilibrium modelling of a DC tungsten-inert gas arc plasma. The advanced description involves the two-way interaction between the plasma and the electrodes. Results in atmospheric pressure argon demonstrating important features of the arc plasma are presented and discussed. First results in the presence of metal vapour released from the molten anode are presented. Outlook for further developments in nonequilibrium arc modelling are discussed.

References

A. B. Murphy. A perspective on arc welding research: The importance of the arc, unresolved questions and future directions. Plasma Chemistry and Plasma Processing, 35:471–489, 2015. doi:10.1007/s11090-015-9620-2

J. J. Lowke and A. B. Murphy. Plasma flows. In R. W. Johnson, editor, The handbook of fluid dynamics, chapter 15. CRC Press, Boca Raton, 1998.

M. S. Benilov. Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: a review. J. Phys. D: Appl. Phys., 41(14):144001 (30pp), 2008. doi:10.1088/0022-3727/41/14/144001

J. Mentel and J. Heberlein. The anode region of low current arcs in high intensity discharge lamps. J. Phys. D: Appl. Phys., 43:023002, 2010. doi:10.1088/0022-3727/43/2/023002

N. A. Almeida, M. S. Benilov, and G. V. Naidis. Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. Phys. D: Appl. Phys., 41:245201, 2008. doi:10.1088/0022-3727/41/24/245201

I. L. Semenov, I. V. Krivtsun, and U. Reisgen. Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J. Phys. D: Appl. Phys., 49:105204, 2016. doi:10.1088/0022-3727/49/10/105204

M. S. Benilov and M. Cunha. Heating of refractory cathodes by high-pressure arc plasmas I. J. Phys. D: Appl. Phys., 35:1736–1750, 2002. doi:10.1088/0022-3727/35/14/314

M. S. Benilov, M. Carpaij, and M. D. Cunha. 3D modelling of heating of thermionic cathodes by high-pressure arc plasmas. J. Phys. D: Appl. Phys., 39:2124–2134, 2006. doi:10.1088/0022-3727/39/10/024

F. Cayla, P. Freton, and J.-J. Gonzalez. Arc/cathode interaction model. IEEE Transac. Plasma Sci., 36(4):1944–1953, 2008. doi:10.1109/TPS.2008.927378

M. S. Benilov and A. Marotta. A model of the cathode region of atmospheric pressure arcs. J. Phys. D: Appl. Phys., 28:1869–1882, 1995. doi:10.1088/0022-3727/28/9/015

J. Wendelstorf. Ab initio modelling of thermal plasma gas discharges (electric acrs). Ph.D. Thesis, Univ. Braunschweig, Germany, 2000.

J. J. Gonzalez et al. Two-dimensional self-consistent modelling of the arc/cathode interaction. J. Phys. D: Appl. Phys., 42:145204, 2009. doi:10.1088/0022-3727/42/14/145204

S. Gorchakov et al. Nonequilibrium arc model for the description of arc-electrode interaction. Proceedings 27th ICEC, 22-26 June Dresden, Germany, VDE Verlag, 2014.

J. Shirvan and I. Choquet. Gtaw process - a review of cathode plasma coupling modelling. Welding in the World, 60:821835, 2016.

M. Baeva. Thermal and chemical nonequilibrium effects in free-burning arcs. Plasma Chemistry and Plasma Processing, 36:151–167, 2016. doi:10.1007/s11090-015-9650-9

J. Wendelstorf. Two-temperature, two-dimensional modelling of cathode-plasma interaction in electric arcs. Proceedings 24th ICPIG, 11-16 July Warsaw, Poland, v. 2 p. 227, 1999.

H.-P. Li and M. S. Benilov. Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J. Phys. D: Appl. Phys., 40:2010–2017, 2007. doi:10.1088/0022-3727/40/7/024

M. Baeva et al. Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci. Technol., 21:055027, 2012. doi:10.1088/0963-0252/21/5/055027

M. Baeva et al. Novel non-equilibrium modelling of a DC electric arc in argon. J. Phys. D: Appl. Phys., 49:245205, 2016. doi:10.1088/0022-3727/49/24/245205

V. M. Zhdanov. Transport phenomena in multicomponent plasma. London: Taylor and Francis, 2002.

J. D. Ramshaw. Self-consistent effective binary diffusion in multicomponent gas mixtures. J. Non-Equilib. Thermodyn., 15:295–300, 1990. doi:10.1515/jnet.1990.15.3.295

V. Rat et al. Treatment of non-equilibrium phenomena in thermal plasma flows. J. Phys. D: Appl. Phys., 41:183001, 2008. doi:10.1088/0022-3727/41/18/183001

M. S. Benilov et al. Account of near-cathode sheath in numerical models of high-pressure arc discharges. J. Phys. D: Appl. Phys., 49:215201, 2016. doi:10.1088/0022-3727/49/21/215201

COMSOL Multiphysics v.5.2a (Stockholm: COMSOL) http://www.comsol.com

J. Haidar and A. J. D. Farmer. Large effects of cathode shape on plasma temperature in high-current free-burning arcs. J. Phys. D: Appl. Phys., 27:555–560, 1994. doi:10.1088/0022-3727/27/3/019

M. Baeva, E. Siewert, and D. Uhrlandt. Electric field and voltage of tig arcs from non-equilibrium modeling and experiment. Proceedings Gas Discharges and Their Applications, 11-16 September Nagoya, Japan, vol. 1, pp. 73-76, 2016.

M. S. Benilov. Theory of nonlinear surface heating. Phys. Scripta, T84:22–46, 2000. doi:10.1238/Physica.Topical.084a00022

M. Baeva. Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem. Plasma Process., 37:341–370, 2017. doi:10.1007/s11090-017-9785-y

J. Heberlein, J. Mentel, and E. Pfender. The anode region of electric arcs: a survey. J. Phys. D: Appl. Phys., 43:023001, 2010. doi:10.1088/0022-3727/43/2/023001

R. V. Hartmann and J. V. Heberlein. Quantitative investigations on arc-anode attachments in transferred arcs. J. Phys. D: Appl. Phys., 34:2972–2978, 2001. doi:10.1088/0022-3727/34/19/307

T. Amakawa et al. Anode-boundary-layer behaviour in a transferred, high-intensity arc. J. Phys. D: Appl. Phys., 31:2826–2834, 1998. doi:10.1088/0022-3727/31/20/017

M. Baeva. A survey of chemical nonequilibrium in argon arc plasma. Plasma Chem. Plasma Process., 37:513–530, 2017. doi:10.1007/s11090-016-9778-2

J.-J. Gonzalez et al. Mathematical modeling of a free-burning arc in the presence of metal vapor. J. Appl. Phys., 74(5):3065–3070, 1993. doi:10.1063/1.354624

A. J. D. Farmer, G. N. Haddad, and L. E. Cram. Temperature determinations in a free-burning arc: III. measurements with molten anodes. J. Phys. D: Appl. Phys., 19:1723–1730, 1986. doi:10.1088/0022-3727/19/9/016

J. Mougenot et al. Plasma-weld pool interaction in tungsten-inert gas configuration. J. Phys. D: Appl. Phys., 46:135206, 2013. doi:10.1088/0022-3727/46/13/135206

M. Tanaka et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J. Phys. D: Appl. Phys., 43:434009, 2010. doi:10.1088/0022-3727/43/43/434009

G. Lago et al. A numerical modelling of an electric arc and its interaction with the anode: Part i. the two-dimensional model. J. Phys. D: Appl. Phys., 37:883–897, 2004. doi:10.1088/0022-3727/37/6/013

A. B. Murphy et al. Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J. Phys. D: Appl. Phys., 42:194006, 2009. doi:10.1088/0022-3727/42/19/194006

Downloads

Published

2017-02-12

Issue

Section

Review Papers