Modelling and Simulation of SF6 High-Voltage Circuit-Breakers - an Overview on Basics and Application of CFD Arc Simulation Tools

Authors

  • F. Reichert Siemens AG, Nonnendammallee 104, 13629 Berlin
  • A. Petchanka Siemens AG, Nonnendammallee 104, 13629 Berlin
  • P. Freton University Paul Sabatier, LAPLACE, 118 route de Narbonne, CNRS-UPS, 31062 Toulouse
  • J. J. Gonzalez University Paul Sabatier, LAPLACE, 118 route de Narbonne, CNRS-UPS, 31062 Toulouse

DOI:

https://doi.org/10.14311/ppt.2017.3.213

Keywords:

high-voltage circuit-breaker, CFD arc simulation tool, modelling, application

Abstract

The paper gives an overview on the basics of CFD arc simulation tools with respect to the simulation of the fluid mechanical processes in the interrupter unit of SF6 high-voltage circuit-breakers at no-load and short-circuit switching-off processes. On the example of SF6 self-blast circuit-breakers the complete process from the analysis of the switching-off process to the creation of a modular simulation model consisting of several sub models is illustrated. Details to the modelling in the particular sub modules and to the implementation are given. The capability of a CFD arc simulation tool based on the program package ANSYS/FLUENT is demonstrated on the basis of selected simulation results. Furthermore case examples for the application of the presented CFD arc simulation tool in the development process of high-voltage circuit-breakers are given.

References

M. Kriegel et al. Simulation and calculation as verification tools. Electra, 234:13–18, 2007.

J. Sedlacek et al. Optimization of high-voltage self-blast interrupters by gas flow and electric field computations. IEEE Transactions on Power Delivery, 18(4):1228–1234, 2003. doi:10.1109/TPWRD.2003.817536.

N. Osawa et al. Investigation of the optimum design of thermal puffer type gas circuit breaker with secondary chamber. In 15th International Conference on Gas Discharges and their Applications, pages 13–16, Toulouse, France, 2004.

F. Reichert et al. Modellierung und Simulation eines Federspeicher-Antriebssystems. Konstruktion, 64(3):67–73, 2012.

F. Reichert. Numerische Simulation strömungsmechanischer Vorgänge in SF6-Hochspannungsleistungsschaltern. Postdoctoral thesis. University press Ilmenau, Germany, 2014.

J. Ostrowski et al. Computational magnetohydrodynamics in the simulation of gas circuit breakers. International Journal of Computational Science and Engineering, 9(5/6):433–444, 2014. doi:10.1504/IJCSE.2014.064528.

C. Lüders. Vergleich von Strahlungs- und Turbulenzmodellen zur Modellierung von Lichtbögen in SF6-Selbstblasleistungsschaltern. Thesis. RWTH Aachen, Germany, 2005.

L. Niemeyer. Evaporation dominated high current arcs in narrow channels. IEEE Transactions on Power Apparatus and Systems, PAS-97(3):950–958, 1978. doi:10.1109/TPAS.1978.354568.

P. Kovitya et al. Theoretical predictions of ablation-stabilised arcs confined in cylindrical tubes. J. Phys. D: Appl. Phys., 17(6):1197–1212, 1984. doi:10.1088/0022-3727/17/6/016.

M. Seeger et al. An integral arc model for ablation controlled arcs based on CFD simulations. J. Phys. D: Appl. Phys., 39(10):2180–2191, 2006. doi:10.1088/0022-3727/39/10/029.

M. Claessens et al. Simulation of gas flow phenomena in high-voltage self-blast circuit breakers at heavy fault current interruption. IEEE Transactions on Plasma Science, 25(5):1001–1007, 1997. doi:10.1109/27.649618.

J.J. Gonzalez et al. PTFE vapor contribution to pressure changes in high-voltage circuit breakers. IEEE Transactions on Plasma Science, 43(8):2703–2714, 2015. doi:10.1109/TPS.2015.2450536.

A. Petchanka et al. Modelling of the deformation of PTFE-nozzles in a high voltage circuit breaker due to multiple interruptions. J. Phys. D: Appl. Phys., 49(13):135201, 2016. doi:10.1088/0022-3727/49/13/135201.

Y.J. Kim et al. SF6 arc plasma simulation and breakdown performance prediction using computational fluid dynamics and arc modeling original. Thin Solid Films, 521:206–211, 2012. doi:10.1016/j.tsf.2011.11.076.

M.J. Ha et al. Simulation of hot gas flow in a high voltage circuit breaker with P1 radiation model. In 20th Symposium on Physics of Switching Arc, pages 167–171, Brno, Czech Republic, 2013.

A.A. Iordanidis et al. Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers. J. Phys. D: Appl. Phys., 41(13):135206, 2008. doi:10.1088/0022-3727/41/13/135206.

F. Reichert et al. Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. J. Phys. D: Appl. Phys., 45(37):375201, 2012. doi:10.1088/0022-3727/45/37/375201.

P. Freton et al. Magnetic field approaches in dc thermal plasma modelling. J. Phys. D: Appl. Phys., 44(34):345202, 2011. doi:10.1088/0022-3727/44/34/345202.

J.J. Lowke et al. A simplified unified theory of arcs and their electrodes. J. Phys. D: Appl. Phys., 30(14):2033–2042, 1997. doi:10.1088/0022-3727/30/14/011.

L. Z. Schlitz et al. High-resolution transmission electron microscopy of some Tin+1AXn compounds (n=1, 2; A=Al or Si; X=C or N). J. Appl. Phys., 85(5):2540–2546, 1999. doi:10.1063/1.371089.

A.B. Murphy. A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding. J. Phys. D: Appl. Phys., 44(19):194009, 2011. doi:10.1088/0022-3727/44/19/194009.

J.D. Yan et al. A comparative study of turbulence models for SF6 arcs in a supersonic nozzle. J. Phys. D: Appl. Phys., 32(12):1401–1406, 1999. doi:10.1088/0022-3727/32/12/317.

R. Bini et al. Arc-induced turbulent mixing in an SF6 circuit breaker model. J. Phys. D: Appl. Phys., 44(2):25203–25212, 2011. doi:10.1088/0022-3727/44/2/025203.

J.J. Gonzalez et al. Turbulence and magnetic field calculations in high-voltage circuit breakers. IEEE Transactions on Plasma Science, 40(3):936–945, 2012. doi:10.1109/TPS.2011.2180404.

X. Li et al. Breakdown electric field calculation of hot SF6 and its application to high voltage circuit breakers. In 58th IEEE Holm Conference on Electrical Contacts, pages 43–48, Portland, OR, US, 2012.

M. Yousfi et al. Breakdown electric fields in dissociated hot gas mixtures of sulfur hexafluoride including teflon: Calculations with experimental validations and utilization in fluid dynamics arc simulations. J. Appl. Phys., 121(10):103302, 2017. doi:10.1063/1.4977864.

S. Aded Hussein et al. Detailed investigation of breakdown prediction models for high voltage circuit breakers. Plasma Physics and Technology, 2(2):108–111, 2015.

J.C. Lee et al. Numerical study on switching arcs and turbulence models inside a SF6 self-blast interrupter. In 20th Symposium on Physics of Switching Arc, pages 232–235, Brno, Czech Republic, 2013.

H.K. Kim et al. Analysis of SLF interruption performance of self-blast circuit breaker by means of CFD calculation. J. Electr. Eng. Technol., 9(1):254–258, 2014. doi:10.5370/JEET.2014.9.1.254.

F. Reichert et al. Studies on the thermal re-ignition in SF6 high-voltage circuit-breakers by means of coupled simulation. Plasma Physics and Technology, 2(2):195–198, 2015.

C. Rümpler et al. Arc modeling challenges. Plasma Physics and Technology, 2(3):261–270, 2015.

S. Hartridge et al. Aspects of plasma simulations in STAR-CCM+. NAFEMS World Congress, Stockholm, Sweden, 2016.

R. Methling et al. Spectroscopic study of arc temperature profiles of a switching-off process in a model chamber. Plasma Physics and Technology, 2(2):163–166, 2015.

A. Petchanka et al. CFD arc simulation of a switching-off process in a model chamber. Plasma Physics and Technology, 2(1):63–66, 2015.

Downloads

Published

2017-02-12

Issue

Section

Review Papers