Program Processing Database Data for Calculation of Spectral Lines Width and Shift in Plasma

Authors

  • J. Pokorný aculty of Electrical Engineering and Communication, BUT in Brno, Technická 3058/10, 616 00 Brno

DOI:

https://doi.org/10.14311/ppt.2017.3.277

Keywords:

spectral line broadening, spectral line shift, Stark effect, Van der Waals effect

Abstract

Electric and magnetic fields cause splitting of energy levels in an atom. Transition of electrons among these levels could be seen as broadening and shift of spectral lines. We recognize various types of effects, the most important is Stark effect. We developed a program for calculations of temperature dependence linear coefficients of Stark broadening and shift of spectral lines. Our results were calcutated for temperatures usual for SF6 circuit breaker.

References

NIST ASD Team. NIST atomis spectra database (version 5.4). [2017-09-01] https://www.nist.gov/pml/atomic-spectra-database.

H. R. Griem. Semiempirical formulas for the electron–impact widths and shifts of isolated ion lines in plasmas. Phys. Rev., 165(1):258–266, 1968. doi:10.1103/PhysRev.165.258.

P. A. M. van Hoof et al. Accurate determination of the free-free gaunt factor I – non-relativistic gaunt factors. Monthly Notic. Royal Astr. Soc., 444:420–428, 2014. doi:10.1093/mnras/stu1438.

R. W. Liebermann et al. Radiation emission coefficients for sulfur hexafluoride arc plasmas. J. Quant. Spectr. Radiat. Transfer, 16(3):253–264, 1976. doi:10.1016/0022-4073(76)90067-4.

N. Milovanovic et al. Cowan code and Stark broadening of spectral lines of S II, S III and S IV. AIP Conference Proceedings, 938(1):258–261, 2007. doi:10.1063/1.2800140.

V. N. Maller et al. Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum. Pergamon Press, Oxford, U.K., 1981. ISBN 0-08-024726-1.

Downloads

Published

2017-02-12

Issue

Section

Articles