Modeling of the Interaction between the Switching Arc and Hydraulic Driving Mechanism in Gas-blast Circuit Breakers

Authors

  • H. Zhang Pinggao Group Co. Ltd., Pingdingshan City, Henan, 471001
  • K. Cao Department of Electrical Engineering, University of Liverpool, Brownlow Hill, Liverpool
  • Q. Zhang Department of Electrical Engineering, University of Liverpool, Brownlow Hill, Liverpool
  • J. D. Yan Department of Electrical Engineering, University of Liverpool, Brownlow Hill, Liverpool

DOI:

https://doi.org/10.14311/ppt.2017.3.281

Keywords:

coupled simulation, driving mechanism, switching arc

Abstract

The presence of an arc in a circuit breaker interrupter creates an opposing force to the driving mechanism by changing of the pressure field. This opposing force alters the dynamics of the driving mechanism, the travel characteristics of the moving contact and therefore the switching process. The severity of the influence depends on the structure of the interrupter, the travel profile and also the current waveform, especially the magnitude of the fault current. A 252 kV puffer circuit breaker was used in the present work to study the key factors that contribute to the uncertainty of the predicted contact travel based on coupled simulation.

References

G. Bizjak, P. Zunko, and D. Povh. Circuit breaker model for digital simulation based on mayr’s and cassie’s differential arc equations. IEEE Transactions on Power Delivery, 10(3):1310–1315, 1995. doi:10.1109/61.400910.

R.E. Blundell and M.T.C. Fang. A simplified turbulent arc model for the current-zero period of a SF6 gas-blast circuit breaker. Journal of Physics D: Applied Physics, 31(5):561–568, 1998. doi:10.1088/0022-3727/31/5/013.

M. Okamoto, M. Ishikawa, K. Suzuki, and H. Ikeda. Computer simulation of phenomena associated with hot gas in puffer-type gas circuit breaker. IEEE Transactions on Power Delivery, 6(2):833–839, 1991. doi:10.1109/61.131142.

A. Petchanka, F. Reichert, F. Methling, and S. Franke. CFD arc simulation of a switching-off process in a model chamber. Plasma Physics and Technology, 2(1):63–66, 2015. URL: http://ppt.fel.cvut.cz/articles/2015/petchanka.pdf.

B. Xu, R. Ding, J. Zhang, and Q. Su. Modeling and dynamic characteristics analysis on a three-stage fast-response and large-flow directional valve. Energy conversion and management, 79:187–199, 2014. doi:10.1016/j.enconman.2013.12.013.

B. Xu, R. Ding, J. Zhang, L. Sha, and M. Cheng. Multiphysics-coupled modeling: Simulation of the hydraulic-operating mechanism for a SF6 high-voltage circuit breaker. IEEE/ASME Transactions on Mechatronics, 21(1):379–393, 2016. doi:10.1109/TMECH.2015.2460351.

K.Y. Park and M.T.C. Fang. Mathematical modeling of SF6 puffer circuit breakers. I. High current region. IEEE Transactions on Plasma Science, 24(2):490–502, 1996. doi:10.1109/27.510015.

K.Y. Park, X.J. Guo, R.E. Blundell, M.T.C. Fang, and Y.J. Shin. Mathematical modeling of SF6 puffer circuit breakers. II. Current zero region. IEEE Transactions on Plasma Science, 25(5):967–973, 1997. doi:10.1109/27.649608.

J.Y. Zhong, Y.J. Guo, and H. Zhang. Pressure and arc voltage measurement in a 252 kV SF6 puffer circuit breaker. Plasma Science and Technology, 18(5):490–493, 2016. doi:10.1088/1009-0630/18/5/08.

H.E. Merritt. Hydraulic control systems. John Wiley & Sons, 1967.

Downloads

Published

2017-02-12

Issue

Section

Articles