Semiconductor Detectors for Observation of Multi-MeV Protons and Ions Produced by Lasers

Authors

  • J. Krása Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague
  • D. Klír Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27 Prague
  • M. De Marco Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, Břehová 2, 115 19 Prague
  • J. Cikhardt Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27 Prague
  • A. Velyhan Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague
  • K. Řezáč Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27 Prague Institute of Plasma Physics of the CAS, Za Slovankou 3, 182 00 Prague
  • M. Pfeifer Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague
  • E. Krouský Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague
  • L. Ryć Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw
  • J. Dostál Institute of Plasma Physics of the CAS, Za Slovankou 3, 182 00 Prague
  • J. Kaufman Institute of Physics of the CAS, Na Slovance 2, 121 21 Prague
  • J. Ullschmied Institute of Plasma Physics of the CAS, Za Slovankou 3, 182 00 Prague
  • J. Limpouch Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, Břehová 2, 115 19 Prague

DOI:

https://doi.org/10.14311/ppt.2016.1.9

Keywords:

laser-accelerated ions, ion collectors, SiC detectors, similarity relations, electromagnetic pulse

Abstract

The application of time-of-flight Faraday cups and SiC detectors for the measurement of currents of fast ions emitted by laser-produced plasmas is reported. Presented analysis of signals of ion detectors reflects the design and construction of the detector used. A similarity relation between output signals of ion collectors and semiconductor detectors is established. Optimization of the diagnostic system is discussed with respect to the emission time of electromagnetic pulses interfering with signals induced by the fastest ions accelerated up to velocities of 107 m/s. The experimental campaign on laser-driven ion acceleration was performed at the PALS facility in Prague.

References

D. Klir, et al. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side, Phys. Plasmas, 229(9): 093117, 2015.

J. Krása. Gaussian energy distribution of fast ions emitted by laser-produced plasmas. Applied Surface Science 272: 46–49, 2013.

J. Lorusso, et al. Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 86(8): 081501, 2005.

M. Comet, et al. Absolute energy distributions of Al, Cu, and Ta ions produced by nanosecond lasergenerated plasmas at 1013 W cm−2. J. Appl. Phys. 119(1): 013301, 2016.

J. Krása, et al. The effect of laser-produced plasma expansion on the ion population. Appl. Phys. Lett. 75(17): 2539-2541, 1999.

D. Picciotto, et al. Boron-Proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser. Phys. Rev. X 4(3): 031030, 2014.

D. Klir, et al. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications. Phys. Plasmas, 230(2): 032702, 2016.

D. Margarone, et al. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys. 109(10): 103302, 2011.

L. Ryć, et al.: Application of a single-crystal CVD diamond detector for simultaneous measurement of ions and X-rays from laser plasmas. Radiat. Eff. Defects Solids 165(6-10): 481-487, 2010.

L. Ryć, et al. Measurement of ion emission from plasmas obtained with a 600 fs KrF laser. Phys. Scr. T161: 014032, 2014.

J. F. Ziegler, et al. SRIM – The Stopping and Range of Ions in Matter. (available at: www.srim.org)

M. De Marco, et al. Electromagnetic pulses produced by expanding laser-produced Au plasma. Nucleonika 60(2): 239-243, 2015.

Downloads

Published

2016-02-13

Issue

Section

Articles