
Plasma Physics and Technology 3(2):66–71, 2016 © Department of Physics, FEE CTU in Prague, 2016

SOLUTION OF POISSON’S EQUATION IN ELECTROSTATIC
PARTICLE-IN-CELL SIMULATIONS.

Kahnfeld D.a,∗, Schneider R.a,b, Matyash K.a,b, Kalentev O.c,
Kemnitz S.b,d, Duras J.e,a, Lüskow K.a, Bandelow G.a

a Ernst-Moritz-Arndt University Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 17487 Greifswald,
Germany

b Computing Center, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald, Germany
c Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, D-37077
Göttingen, Germany

d University Rostock, Institute of Informatics, Albert-Einstein-Str. 22, 18059 Rostock, Germany
e Department of Applied Mathematics, Physics and Humanities, Nürnberger Institute of Technology, D-90489
Nürnberg, Germany

∗ kahnfeldd@uni-greifswald.de

Abstract. In electrostatic Particle-in-Cell simulations of the HEMP-DM3a ion thruster the role
of different solution strategies for Poisson’s equation was investigated. The direct solution method
of LU decomposition is compared to a stationary iterative method, the successive over-relaxation
solver. Results and runtime of solvers were compared, and an outlook on further improvements and
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1. Introduction1

For spacecrafts the concept of ion thrusters presents2

a very efficient method of propulsion. Ion thrusters3

generate a low thrust with much higher efficiency than4

chemical propulsion systems [1] and are commonly5

used on satellites in earth orbits.6

Thrust is generated by accelerating ions of a plasma7

discharge and expelling them into space. The plasma8

within the thruster channel is dominated by electro-9

static and magnetic fields, plasma-wall-interaction and10

non-linear effects. The shape and size of the plume11

have to be considered in the design of ion thrusters to12

account for possible damages caused by ion sputtering,13

but experimental access is difficult [1].14

The HEMP-DM3a ion thruster design, as shown15

in fig. 1, possesses a rotational symmetry. The left16

boundary of the channel contains the anode with a17

voltage of 500 V, with the cathode supplied by an18

electron beam outside the channel which also serves19

as electron source and neutralizer for the expelled20

ions. The thruster channel is surrounded by perma-21

nent magnet rings of opposite magnetization. This22

results in a nearly constant magnetic field at the sym-23

metry axis of the thruster with the exception of cusp24

regions, where two rings with opposite magnetization25

are located next to each other. The inner boundary of26

the thruster channel is made up of a dielectric ceramic27

consisting of Boron Nitrite which has a high threshold28

energy to reduce sputtering [2]. The thruster’s exit29

is concluded with a grounded metal plate attached30

outside the dielectric. A more detailed description of31

the thruster can be found in [3].32

Plasma simulations offer the means to understand33

the plasma physics within an ion thruster and can34

aid the design of new thruster concepts. A widely35

applied method is the Particle-in-Cell (PIC) scheme,36

simulating the trajectories of super-particles consisting37

of many real particles. Even with modern hardware,38

state-of-the-art features such as similarity scaling [4]39

and non-uniform grids [5] have to be used to make40

simulation of an ion thruster conceivable.41

With the access to highly parallel computing clus-42

ters the best chance of gaining a speed-up of the43

simulation is an efficient parallelization. In order to44

achieve good scalability the communication overhead45

needs to be kept as small as possible, while load imbal-46

ance needs to be avoided by proper work distribution.47

One bottleneck for an efficient parallelization is the48

solution of Poisson’s equation, which is often obtained49

by the use of traditional direct methods such as the50

Gauss algorithm. While very fast, such methods can-51

not be parallelized, and may lead to memory problems52

for large domain sizes. Therefore parallel solution53

strategies need to be investigated, one of which is the54

successive over-relaxation method.55

2. Theory and code description56

2.1. Basics of PIC57

The Particle-in-Cell (PIC) method is a well-
established scheme for simulation of plasmas. In PIC,
so-called super-particles are moved within a simu-
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Figure 1. Schematic design of the HEMP-DM3a thruster.

lation domain, each representing a number of real
particles. A grid is introduced, dividing the simu-
lation region into cells, with macroscopic quantities
such as the charge density n and the electrostatic
potential φ being calculated only on the grid points.
This enables treatment of large systems by calculating
the electrostatic potential via Poisson’s equation

∆Φ(~x, t) = −n(~x, t)
εε0

(1)

only on the grid instead of N2 direct particle interac-58

tions. Collisional effects are only taken into account59

within each cell separately.60

The PIC cycle starts at a given time t0 by initializing61

the system and calculating the macroscopic quantities62

on the grid points using the particle positions and63

velocities. The forces acting on the particles are calcu-64

lated on the grid and then reassigned to each particle,65

resulting in a change of the particle’s position and ve-66

locity. After calculating further particle interactions,67

i.e. collisions and surface interactions, the system is68

advanced by a discrete timestep ∆t and returns to the69

start of the cycle. To assure stability, the timestep70

has to be chosen small enough to resolve the fastest71

particle movement. A more detailed description of72

the PIC method can be found in [6].73

2.2. Finite difference scheme and solvers74

To calculate the electric field on the grid, Poisson’s
equation has to be solved. The solutions will be ac-
quired by introducing a finite difference scheme for
the spatial second order derivatives. For a two dimen-
sional M ×N grid (xi, yj) with constant permittivity
ε and charge density n = ni−ne eq. 1 takes the form

∆Φ = AΦ = − n

εε0
, (2)

creating a system of linear equations to be solved. The75

form of the matrix A depends on the discretization76

stencil that is used. The PIC code discussed here77

employs a five-point stencil leading to an accuracy of78

second order. Accuracy may be increased by incor-79

porating more points into the difference scheme, i.e.80

by using a nine-point stencil, at the cost of increased81

computation time by additional matrix entries [7].82

The resulting (M ·N)×(M ·N)−dimensional matrix
A has a characteristic block structure

A =



D B 0 · · · 0

B D B .. . ...

0 B . . . . . . 0
... . . . . . . . . . B
0 · · · 0 B D


.

The matrices D and B then have a dimension of M ×83

M . In the model case of a five-point stencil on a84

cartesian grid, D is tridiagonal with values of −4 as85

diagonal entries and values of 1 elsewhere. In that86

case, B is the unity matrix. In real applications the87

matrix structure is more complicated, as boundary88

conditions, non-constant permittivity ε or choice of89

geometry change the matrix structure. The case of90

radial coordinates, which is used in the PIC code91

discussed, is described more closely in [8]. Despite a92

more complex structure, basic matrix properties such93

as symmetry are preserved.94

2.2.1. LU Decomposition95

An often used method to solve systems of linear equa-
tions is the LU decomposition, also known as Gauss
algorithm. Eq. 2 can be rewritten in the form

AΦ = b . (3)

The system can be solved by representing the matrix
A as the product of an upper triangular matrix U
and a lower triangular matrix L, transforming the
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equation to

AΦ = LUΦ = LΦ̃ = b .

If L and U are known, the solution is easy. Φ̃ is96

obtained by simply substituting the result of the pre-97

vious lines into the next one as L has a triangular98

structure. The next step is to obtain Φ by solving99

for UΦ = Φ̃ analogously. This step is also known100

as back-solve. For each back-solve, the complexity is101

∼ (M ·N)2
/2 [9], making it very efficient.102

The problem lies in the computation of the decom-103

position A = LU which shall not be discussed in detail104

here, but a good review can be found in [9]. It can105

be shown that a LU decomposition exists for every106

regular matrix, but pivoting, interchanging rows and107

columns of the matrix in order to move the matrix ele-108

ments with the highest absolute value to the diagonal,109

might be necessary, thus further increasing computa-110

tion time. The complexity of the decomposition is111

∼ (M ·N)3
/3.112

The Gauss algorithm is a very robust direct method113

to solve matrix equations. With the exception of114

rounding errors, which can be minimized by partial115

or full pivoting, it reliably delivers the right solution.116

In PIC the LU decomposition offers a reliable and117

efficient solver for the field solving step, as the ma-118

trix structure is well investigated. The decomposition119

is calculated at the beginning of code execution, as120

the matrix does not change throughout the execution121

of the code, and only the back-solve has to be com-122

puted every PIC cycle, hence giving a complexity of123

∼ (M ·N)2 per PIC cycle.124

However, a parallelization is problematic, as each125

line within a back-solve step depends on the results of126

the previous lines, limiting its application to a compu-127

tational core. Parallel methods are only available for128

the calculation of the LU decomposition but not for129

the back-solve [10]. Therefore, in each PIC step it is130

necessary to reduce the charge densities onto a single131

core and then distribute the calculated electrostatic132

potential if the LU decomposition is used. The com-133

munication overhead created by this approach cannot134

be neglected on highly parallel systems.135

2.2.2. Successive over-relaxation136

On parallel systems, a frequently used method to solve
eq. 2 is the use of a stationary iterative procedure. To
formally obtain such procedures, eq. 3 is rearranged
using a regular matrix B. The (k + 1)−th iterate is
then calculated as

AΦ = BΦ + (A− B) Φ = b

BΦk+1 + (A− B) Φk = b

Φk+1 = Φk − B−1 (AΦk − b
)

= F
(
Φk
)
,

The iterative procedure can be broken down to four137

steps:138

i) Choose a starting point Φ0 .139

ii)Calculate AΦk .140

iii)Solve B∆Φk = b−AΦk .141

iv)Φk+1 = Φk + ∆Φk .142

B is chosen to have a simple form in order to reduce
the necessary number of operations and defines the
iterative procedure. Also B is often linked to the
matrix A. If it is chosen to be the diagonal of A,
the algorithm is known as Jacobi algorithm. If B is
chosen to be the sum of the A’s diagonal matrix D
(with aii 6= 0 for all i) and its lower triangular matrix
L (not to be confused with the matrix used in the LU
decomposition), the Gauss-Seidel algorithm, with the
element index i, is acquired:

A = D + L + R
B = D + L

Φk+1 = − (D + L)−1 (RΦk − b
)

Φk+1
i = 1

aii

bi −
∑
j<i

aijΦk+1
j −

∑
j>i

aijΦk
j

 . (4)

This method is convergent if A is symmetric and
positive definite [7]. It can be enhanced by introducing
a relaxation parameter ω into the choice of B

B(ω) = 1
ω

(D + ωL) .

The algorithm is altered, giving

Φk+1 = Φk + ω
(
Φ̃k+1 − Φk

)
Φ̃k+1

i − Φi = 1
aii

bi −
∑
j<i

aijΦk+1
j

∑
j>i

aijΦk
j − aiiΦk

i


where Φ̃k+1

i is calculated via eq. 4. If ω < 1 this is143

called under-relaxation and can be used to dampen144

divergent solutions. For ω > 1 the algorithm is known145

as successive over-relaxation (SOR) which is an often146

applied method to solve the finite difference scheme147

for Poisson’s equation.148

The iteration continues until a termination criterion
is met. A possible choice is

‖Φk+1 − Φk‖
‖Φk+1‖

< δ

in a given vector norm ‖ · ‖. Because this criterion is
critical for Φk+1 → 0 the condition

‖Φk+1 − Φk‖max < ε

may be used as well. The maximum norm is chosen149

to minimize the necessary computational cost.150

For the solution to converge, as the Gauss-Seidel151

algorithm depends on the newly calculated iterates,152
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the domain should be divided into small subdomains,153

each solved separately. A chess board pattern, solving154

first all even and then all uneven grid points, or vice155

versa, may also be used.156

It can be shown [7] that the SOR method is only con-
vergent for ω ∈ (0, 2) and that the optimal relaxation
parameter can be found in the interval ωopt ∈ (1, 2).
ωopt can only be analytically calculated for a uniform
grid spaced by ∆, as found in [7], but a decent guess
is provided by the approximation

ωopt ≈ 2−∆ .

The parameter is found in only a narrow range and157

has a large influence on the convergence rate, thus158

it needs to be tuned to the grid used. This can be159

achieved using simple optimization methods such as160

the hill-climb algorithm.161

The complexity of each iteration step is ∼ (M ·N)2
162

and the expected number of iteration steps is ∼163

(M ·N), giving the entire SOR method a complexity164

of ∼ (M ·N)3 [7]. The complexity is much higher165

compared to the back-solve of the LU decomposition166

which scaled quadratically.167

The algorithm’s structure allows for easy paral-168

lelization as the calculation of each point’s iterate169

depends on only the surrounding points, delivering an170

advantage over LU decomposition. Only the boundary171

points have to be exchanged during each iteration step.172

For small subdomains, the communication overhead173

is kept relatively small.174

2.3. Code description175

The first simulations of the HEMP-T were performed176

by K. Matyash et. al. [11] and more recent results can177

be found in [12]. A 2d3v PIC scheme with radially178

symmetric 2D domain and a grid spacing of ∆z =179

∆r = 0.5λD,e on a domain of 1272× 480 grid points180

was used. The particle velocities are treated in 3D.181

The timestep was chosen to be ∆t = 0.2/ωP,e =182

1.2 · 10−12 s with about 106 timesteps necessary to183

reach a steady state. The simulated plasma consists184

of neutral Xenon gas, single positively charged Xenon185

ions and electrons. Particle collisions are simulated186

using a Monte-Carlo collisions scheme. The collisions187

include elastic Coulomb, excitation, ionization and188

elastic neutral-neutral collisions.189

To reduce computational costs, similarity scaling190

as described in [4] is used, reducing the system size191

but keeping the physical laws intact as the mass-to-192

charge ration of each species is unchanged. A non-193

uniform mesh, further discussed in [5], is applied to194

the simulation region. The ions are moved once per195

400∆t and neutrals are moved once per 2000 ∆t.196

A multigrid method incorporating two nested grids,197

as described in [12], is used for the calculation of198

the electrostatic potential Φ. A coarse grid covers the199

entire domain, with a larger grid spacing of ∆zcoarse =200

4∆zfine, while the finer grid only covers the thruster201

region with a mesh of 888× 236 grid points. During202

the field solve phase, a solution for Φ is first obtained203

on the coarse grid, with the boundary conditions of204

the finer grid given by the interpolated values on the205

coarse grid. Then a solution is obtained for the finer206

grid. The anode voltage is set to 500 V with a zero207

potential boundary condition at the upper and a no208

flux condition at the right boundary. For simplicity,209

only the solution of Poisson’s equation on the fine210

grids will be discussed, as the behavior on the coarse211

grid is very similar.212

The existing method for solving Poisson’s equation213

is the Gauss algorithm included in the SuperLU library214

[10], calculating the LU decomposition once, only us-215

ing the back-solve during each PIC timestep. Within216

the PIC code the SOR method was implemented as217

an alternative option to the SuperLU algorithm. The218

iteration procedure is executed until the termination219

condition ‖Φk+1 − Φk‖max < ε is met for two sub-220

sequent iterates Φk+1 and Φk in dimensionless form.221

As the domain covers large areas with Φ = 0 V, a222

relative termination condition is not well-suited here.223

The SOR method requires an initial guess at the start224

of the iteration, therefore SuperLU is executed once225

at the start-up of the code, and the solution will be226

stored as the initial guess of Φ during the first itera-227

tion. Alternatively, the SOR algorithm can also be228

used to obtain the initial guess, but this usually costs229

more computational time than the SuperLU method,230

when no parallelization is used. The solution of each231

following iteration is then stored and used as guess232

during the next field solve.233

For testing of the solvers, a restarted run of the234

code, with charged particles covering the thruster235

channel and the exhaust region, is used. This simu-236

lated HEMP-T is in a steady state after 14 516 000237

timesteps were computed. For the SOR method, the238

initial guess is a constant potential solution on the239

domain to ensure comparability. The PIC code and240

solvers discussed in this work are sequential, but the241

focus of this work lies on the investigation of an easy242

to parallelize Poisson solver.243

3. Results244

In fig. 2 the potential solution is plotted. It can be an-245

ticipated that the zero potential boundary conditions246

on the upper and the no-flux condition on the right247

boundary differ from the real situation, thus deviat-248

ing the simulated potential and distorting simulation249

results. Therefore, a large simulation region for the250

plume is desirable, but increases computational cost,251

which can be made up for by introducing an efficient252

parallelization of the code.253

For the SOR method, an ideal relaxation parameter254

of ωopt = 1.981 was obtained experimentally. A ter-255

mination condition of ε < 10−8 in dimensionless units256

was used, which corresponds to a change in poten-257

tial of roughly 10−2 V, such that the influence of the258

potential difference on the system can be neglected.259

The absolute differences in the domain between the260
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Figure 2. Solution of electrostatic potential in HEMP-DM3a obtained by the use of SuperLU package.

Figure 3. Comparison of solutions of SOR and Su-
perLU solvers with a termination condition of ε <
10−8.

solution of the SOR and SuperLU methods is shown261

in fig. 3. The deviations are largest in the area of the262

thruster exit, where the potential gradient is largest.263

Still the differences are only of the order . 10−2 V. In264

order to judge the applicability of the SOR method265

to PIC codes, one also needs to check the potential266

solution for a larger number of PIC cycles, to ensure267

that rounding errors will not be adding up in certain268

regions. Such a long-term comparison can be seen269

in fig. 4, where the absolute difference in potential270

after 9100 timesteps, averaged over 100 timesteps is271

presented. The differences are of the order of several272

Volts. The plot shows that deviations vary stochasti-273

cally within the thruster channel and no systematic274

errors are adding up using the SOR method.275

Figure 4. Comparison of solutions of SOR and Su-
perLU solvers with a termination condition of ε <
10−8 after 9100 PIC steps, averaged over 100 steps

The runtime of the solvers differs drastically. Using276

the SuperLU back-solve, the execution time of one PIC277

cycle was just under one second, while one the same278

machine the time using the SOR solver was measured279

to be about 23 s per PIC cycle. For the long-term280

test presented in fig. 4, the overall execution time281

increased by a factor of 40. This shows the difference282

in scaling between the back-solve and the SOR method283

as described above.284

4. Conclusions285

The SOR method offers an alternative to traditional286

direct solution methods, i.e. LU decomposition, of287

Poisson’s equation which occurs in finite difference288

discretizations within electrostatic PIC codes. For289
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sequential code structures, this method is not recom-290

mended as its scaling is one order of magnitude worse291

than that of LU decomposition. On massively parallel292

systems however, the situation is different, as the LU293

back-solve cannot be parallelized, hence creating com-294

munication overhead and load imbalance and therefore295

limiting scalability of parallelizations. One choice of296

parallel solver would be the SOR method, with a297

trivial generalization to a multicore environment.298

One problem that arises in parallelization of the299

SOR method is the exchange of domain boundaries300

within each iteration. For a high number of iterations301

this creates considerable communication overhead. A302

possible solution to this problem can be found by303

increasing computational cost of each iteration, with304

a reduction of total number of iterations. Multigrid305

methods [7] make use of the error smoothing prop-306

erty of stationary iterations, such as the Gauss-Seidel307

iteration, and usually converge within the order of308

ten iterations, making further investigations of such309

solvers within parallel PIC codes very attractive.310
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