Dominant Physicochemical Properties of SF6/N2 Thermal Plasmas with a Two-temperature Chemical Kinetic Model

Authors

  • X. Wang State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, 710049, Xi’an, Shaanxi Province
  • Q. Gao State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, 710049, Xi’an, Shaanxi Province
  • L. Zhong State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, 710049, Xi’an, Shaanxi Province
  • A. Yang State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, 710049, Xi’an, Shaanxi Province
  • M. Rong State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, 710049, Xi’an, Shaanxi Province

DOI:

https://doi.org/10.14311/ppt.2016.3.94

Keywords:

SF6/N2 thermal plasmas, departures from thermal equilibrium, dominant physicochemical properties

Abstract

It's increasingly clear that the existence of thermodynamic equilibrium is an exception rather than the role in SF6/N2 thermal plasmas. We intended to investigate the dominant physicochemical properties of SF6/N2 thermal plasmas at 4  atm from 12000 K to 1000 K with considering the thermal non-equilibrium. A two-temperature chemical kinetic model containing all the available reactions is developed. The temperature difference between the electron and the heavy species is defined as a function of the electron number density. The molar fractions of species are compared to the equilibrium composition predicted by Gibbs free energy minimization. By analyzing the main reactions in the generation and loss of a dominant species, the chemistry set is simplified and characterized by a few species and reactions. Then, the dominant physicochemical properties are captured and the computing time of complicated chemical kinetic model is dramatically shortened at the same time.

References

Wang W. Yan J. D. Rong M. Murphy A. B. Spencer, J. W. Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J Phys D Appl Phys, 46(6):065203, 2013.

Zhao H. Li X. Jia S. Murphy, A. B. Dielectric breakdown properties of SF6-N2 mixtures at 0.01 − 1.6 MPa and 300 − 3000K. J Appl Phys, 113(14):143301, 2013.

Gleizes A. Razafinimanana M. Vacquie, S. Calculation of thermodynamic properties and transport coefficients for SF6-N2 mixtures in the temperature range 1000 − 30000 K. Plasma Chem Plasma Process, 6(1):65–78, 1986.

Gleizes A. Razafinimanana M. Vacquie, S. Transport coefficients in arc plasma of SF6-N2 mixtures. J Appl Phys, 54(7):3777–3787, 1983.

Yang F. Chen Z. Wu Y. Rong M. Guo A. Liu Z. Wang, C. Two-temperature transport coefficients of SF6-N2 plasma. Phys Plasma, 22(10):103508, 2015.

André P. Aubreton J. ELCHINGER M. F. Fauchais P. Lefort, A. Plasma Concentrations out of Equilibrium: N2 (Kinetic Method and Mass Action Law), Ar-CCl4 and Ar-H2-CCl4 (Mass Action Law). Annals New York Academy Sci, 891(1):81–89, 1999.

Rat V. André P. Aubreton J. Elchinger M. F. Fauchais P. Lefort, A. A modified pseudo-equilibrium model competing with kinetic models to determine the composition of a two-temperature SF6 atmosphere plasma. J Phys D Appl Phys, 34(14):2191, 2001.

André P. Aubreton J. Elchinger M. F. Fauchais P. Lefort, A. A new modified pseudoequilibrium calculation to determine the composition of hydrogen and nitrogen plasmas at atmospheric pressure. PlasmaChem Plasma Process, 21(1):83–105, 2001.

Rong M. Zhong L. Cressault Y. Gleizes A. Wang X. Chen F. Zheng, H. Thermophysical properties of SF6-Cu mixtures at temperatures of 300 − 30000 K and pressures of 0.01 − 1.0 MPa: part 1. Equilibrium compositions and thermodynamic properties considering condensed phases. J Phys D Appl Phys, 47(49):495202, 2014.

Bartlová M. Coufal, O. Comparison of some models of reaction kinetics in HV circuit breakers with SF6 after current zero. J Phys D Appl Phys, 35(23):3065, 2002.

Adamec L. Coufal, O. Comments on the computation of the composition of quenching media in HV circuit breakers after current zero. J Phys D Appl Phys, 30(11):1646, 1997.

Gordon M. H. Kruger, C. H. Temperature and density measurements in a recombining argon plasma with diluent. Plasma Chem Plasma Process, 13(3):365–378, 1993.

Girard R. Belhaouari J. B. Gonzalez J. J. Gleizes, A. A two-temperature kinetic model of SF6 plasma. J Phys D Appl Phys, 32(22):2890, 1999.

Teulet P. Gonzalez J. J. Mercado-Cabrera A. Cressault Y. Gleizes, A. One-dimensional hydro-kinetic modelling of the decaying arc in air-PA66-copper mixtures: I. Chemical kinetics, thermodynamics, transport and radiative properties. J Phys D Appl Phys, 42(17):175201, 2009.

Woodall J. Agúndez M. Markwick-Kemper A. J. Millar, T. J. The UMIST database for astrochemistry 2006. Astronomy Astrophys, 466(3):1197–1204, 2007.

Wang X. Gao Q. Fu-Y. Yang A. Rong M. Wu Y. Niu C. Murphy, A. B. Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc. J Phys D Appl Phys, 49(10):105502, 2016.

Gao Q. Yang A. Wang X.-Murphy A. B. Li Y. Zhang C. Lu Y. Huan L. Zhu Z. Rong, M. Determination of the dominant species and reactions in non-equilibrium CO2 thermal plasmas with a two-temperature chemical kinetic model. Plasma Chem Plasma Process, accepted, 2016.

Downloads

Published

2016-02-13

Issue

Section

Articles