Investigation of the Spark channel of Electrical Discharges Near the Minimum Ignition Energy

Authors

  • S. Essmann Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
  • D. Markus Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
  • U. Maas Karlsruhe Institute of Technology (KIT), Institute of Technichal Thermodynamics, Engelbert-Arnold-Str. 4, 76131 Karlsruhe

DOI:

https://doi.org/10.14311/ppt.2016.3.116

Keywords:

electrical discharge, minimum ignition energy, schlieren

Abstract

In this work, we investigate the expansion of the hot gas kernel and pressure wave induced by electrical discharges near the minimum ignition energy experimentally by means of a schlieren setup and numerically through one-dimensional simulations. The effects of discharge energy and energy density on the expansion are discussed. Via comparison of experimental values with numerical simulations, an estimate of the overall losses of the discharge is presented.

References

D. R. Ballal and A. H. Lefebvre. The influence of spark discharge characteristics on minimum ignition energy in flowing gases. Combustion and Flame, 24(0):99–108, 1975.

Rolf K. Eckhoff and Werner Olsen. A new method for generation of synchronized capacitive sparks of low energy. reconsideration of previously published findings. Journal of Electrostatics, 68(1):73–78, 2010.

D. L. Rusterholtz, D. A. Lacoste, G. D. Stancu, D. Z. Pai, and C. O. Laux. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges. Journal of Physics D: Applied Physics, 46(46):464010, 2013.

D. A. Xu, M. N. Shneider, D. A. Lacoste, and C. O. Laux. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air. Journal of Physics D: Applied Physics, 47(23):235202, 2014.

N. L. Aleksandrov, S. V. Kindysheva, M. M. Nudnova, and A. Yu Starikovskiy. Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields. Journal of Physics D: Applied Physics, 43(25):255201, 2010.

N. A. Popov. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges. Plasma Physics Reports, 27(10):886–896, 2001.

W. B. Lewis and W. R. Wadt. Laser-induced fluorescence in n2 and n2+ by multiple-photon excitation at 266 nm. Chemical Physics Letters, 78(2):266–269, 1981.

Stefan Essmann, Detlev Markus, and Ulrich Maas. Investigation of the pressure wave and hot gas kernel induced by low energy electrical discharges. In 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2015.

U. Maas and J. Warnatz. Ignition processes in hydrogen-oxygen mixtures. Combustion and Flame, 74(1):53–69, 1988.

Andreas Dreizler, Steffen Lindenmaier, Ulrich Maas, J. Hult, M. Aldén, and C. F. Kaminski. Characterisation of a spark ignition system by planar laser-induced fluorescence of oh at high repetition rates and comparison with chemical kinetic calculations. Applied Physics B: Lasers and Optics, 70(2):287–294, 2000.

Downloads

Published

2016-02-13

Issue

Section

Articles