Atmospheric Pressure Plasma Generation System Based on Pulsed Volume Discharge for the Biological Decontamination of a Surface

Authors

  • A. V. Ponomarev Ural Branch of the Russian Academy of Sciences, Institute of Electrophysics, Amundsen Str. 106, Ekaterinburg
  • A. V. Spyrina Ural Branch of the Russian Academy of Sciences, Institute of Electrophysics, Amundsen Str. 106, Ekaterinburg
  • Y. I. Mamontov Ural Branch of the Russian Academy of Sciences, Institute of Electrophysics, Amundsen Str. 106, Ekaterinburg
  • V. N. Volkhina Ural State Medical University, Repina str. 3, Ekaterinburg
  • T. V. Zakirov Ural State Medical University, Repina str. 3, Ekaterinburg
  • E. S. Ioshchenko Ural State Medical University, Repina str. 3, Ekaterinburg

DOI:

https://doi.org/10.14311/ppt.2016.3.140

Keywords:

pulsed volume discharge, corona discharge, damping oscillations pulse generator, optical emission spectrum, bio-decontamination

Abstract

The research introduces a system for pulsed volume discharges ignition at atmospheric pressure within gaps reaching 125 mm. The corona discharge is used for the volume discharge initiation. A damping oscillations pulse generator is used as a high-voltage power supply. The pulse repetition rate reaches 1 kHz, while the rate of damping high-frequency harmonic oscillations can reach megahertz units. The volume discharge electric and spectral characteristics were analyzed. The study revealed that O2+ emission spectrum dominates in the UV region. The potential of using pulsed volume discharge for cleaning biological surfaces was demonstrated in the research. The survival rate for E. coli under the influence of 15 seconds long pulsed volume discharge has decreased by 30 times.

References

A. P. Napartovich. Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas and Polymers, 6(1/2):1–14, 2001.

M. Laroussi. Low-temperature plasmas for medicine? IEEE Trans. Plasma Sci., 37(6):714–725, 2009.

G. Fridman and Gutsol A. Shekhter A. B. Vasilets V. N. Fridman A. Friedman, G. Applied plasma medicine. Plasma Process. Polym., 5(6):503–533, 2008.

M. G. Kong, Nosenko T Shimizu T Dijk J Kroesen G, MorïňĄll G, and Zimmermann J L. Plasma medicine: an introductory review. New J. Phys., 11(11):1–26, 2009.

H. Ayan, Gutsol A Mukhin Y Starikovskii A Fridman A Staack D, Fridman G, and Friedman G. Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces. J. Phys. D: Appl. Phys., 42(12):1–5, 2009.

U. Kogelschatz. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23(1):1–46, 2003.

H. Ayan, Vasilets V N Fridman A Fridman G, Gutsol A F, and Friedman G. Nanosecond-pulsed uniform dielectric-barrier discharge. IEEE Trans. on Plasma Sci., 36(2):504–508, 2008.

D. Dorranian and Sari A. H. Nasr S. Amini L. Soudi M. R., Jamshidi M. M. Sterilization of esherichia coli and the microorganisms of turmeric samples with corona discharge plasma. J. of Theoretical and Appl. Phys., 4(3):28–36, 2010.

G. A. Mesyats, Rukin S. N. Slovikovsky B G Timoshenkov S P Ponomarev, A. V., and Bushlyakov A I. 1-mv, 500-hz all-solid-state nanosecond driver for streamer corona discharge technologies. High-Power Particle Beams, 2000 13th International Conference, pages 192–195, 2000.

S. Uhm Han and Guang S. Cho Eun, H. Choi. Sterilization of microbes by using various plasma jets. J. of the Korean Phys. Society, 60(6):897–902, 2012.

F. Sohbatzadeh and Mahdavi H. Omidi Z. Mirzanejhad, S. Characterization of argon/air atmospheric pressure capacitively coupled radio frequency dielectric barrier discharge regarding parasitic capacitor at 13.56 mhz. J. of Theoretical and Appl. Phys., 6(32):1–6, 2012.

Li He-Ping and Guo Li Cheng-Yu Bao Wen-Ting Sun, Hua-Bo Wang. Electrical features of radio-frequency, atmospheric pressure, bare-metallic-electrode glow discharges. Plasma Chem. Plasma Process., 27(5):529–545, 2007.

Yu. D. Korolev and G. A. Mesjac. Physics of Pulsed Breakdown in Gases. URO-PRESS, 1998.

V. V. Osipov. Self-sustained volume discharge. Physics - Uspekhi, 43(3):221–241, 2000.

A. V. Ponomarev and Pedos-M. S. Sergeev A. G.-Ustyuzhanin A. V. Podymova A. S. Gusev, A. I. High-frequency generator based on pulsed excitation of the oscillating circuit for biological decontamination. Pulsed Power Conference (PPC), 2013 19th IEEE, pages 1–5, 2013.

I. V. Timoshkin and Wilson M. P. Given M. J. MacGregor-S. J. Wang Tao Anderson J. G. Maclean, M. Bactericidal effect of corona discharges in atmospheric air. IEEE Trans. on Plasma Sci., 40(10, part 1):2322–2333, 2012.

T. Czapka and R. Kacprzyk. Non-thermal plasma reactor with back corona discharge electrode. J. of Phys.: Conference Series, 301(1):1–4, 2011.

J. J. Shi and M. G. Kong. Cathode fall characteristics in a dc atmospheric pressure glow discharge. J. Appl. Phys., 94(9):5504–5513, 2003.

A. F. Gutsol and W. R. Pyle. Negative corona ’tufts’. Plasma Sources Sci. Technol., 23(5):1–5, 2014.

Yu. Akishev and Kochetov I. Napartovich A. Trushkin N. Karalnik, V. High-current cathode and anode spots in gas discharges at moderate and elevated pressures. Plasma Sources Sci. Technol., 23(5), 2014.

D. Wang and Feng K. Zhang X. Liu D. Yang-S. Zhao, D. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications. Appl. Phys. Lett., 98(16):1–3, 2011.

J. Machala and Hensel K. Jedlovsky I. Lestinska L. Foltin-V. Martisovits V. Morvova M. Janda, M. Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J. of Molecular Spectroscopy, 243(2):194–201, 2007.

Wu ShuQun and ZiLan X. Yuan P. XinPei, L. A touchable pulsed air plasma plume driven by dc power supply. IEEE Trans. on Plasma Sci., 38(12):3404–3408, 2010.

D. Ziuzina and Cullen P. J. Keener K. M. Bourke-P. Patil, S. Atmospheric cold plasma inactivation of escherichia coli in liquid media inside a sealed package. J. of Appl. Microbiology, 114(3):778–787, 2013.

A. B. Shekhter and Rudenko T. G. Pekshev A. V.-Vanin F. Serezhenkov, V. A. Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric oxide: biology and chemistry, 12(4):210–219, 2005.

R. Ono and Oda T. Nakagawa, Y. Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge. J. of Phys. D: Appl. Phys., 44(48):1–14, 2011.

Downloads

Published

2016-02-14

Issue

Section

Articles