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Abstract.
In this work, we explore inertial effects, due to charged species in a resistive plasma, on the tearing

instability. The standard theory of tearing modes assumes a long wavelength limit. At shorter wave
lengths, inertial effects can become important and the current density flowing in the fluid can acquire a
finite relaxation time. The introduction of such a correction into the problem leads to an extension
of the standard dispersion relation. In the long wave length limit, we recover the standard scaling of
the growth rate γ with the plasma resistivity η, namely γ ∼ η3/5. However, in the short wavelength
limit, we find that the scaling of γ with the relevant plasma parameters changes significantly due to
the influence of inertia. Notwithstanding, the dependence of γ on the relaxation time of the current
density is not determined. In order to achieve such a description, we propose to further rediscuss the
problem in the framework of the boundary layer technique.
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1. Introduction
The tearing instability was originally discussed by
Furth, Killeen, and Rosenbluth [1], and further de-
veloped by several authors [2–6]. It plays a central
role in tokamak physics because disruptions of magne-
tized plasma columns (due to formation of magnetic
islands) can occur and the confining chamber can
become subjected to strong mechanical stresses [7–
11]. In astrophysical plasmas, tearing modes play an
equally relevant role since a modification of magnetic
topology (magnetic reconnection) can provoke con-
version of magnetic energy into kinetic and thermal
energies, and particle acceleration [12–17].
Tearing modes occur in an infinite plasma which

is assumed to be ideal throughout the whole space,
except in a thin current slab of width a, with a finite
resistivity η. Then, by adopting Cartesian coordinates
(x, y, z), the equilibrium magnetic field, parallel to
the yz-plane of the slab, exhibits a shear through
the dependence of its y-component, By, on the x-
coordinate, perpendicular to the constant equilibrium
current density, J0, which flows along the z-direction.
Actually, all equilibrium fields, F , are assumed to
depend only on the x-coordinate. Thus, a Fourier
analysis can be carried-out on the assumption that
the perturbative fields f = f(x) exp(γt + ıky), with
| f |�| F |. In the standard approach to the problem,
the x-component of the perturbative magnetic field,
bx, satisfies the induction equation

γbx = ıµ0J0kxvx + b′′x
τD/a2 , (1)

where vx denotes the x-component of the perturbative
velocity field (which is assumed to be divergenceless),
τD = a2µ0/η represents the magnetic diffusion time

scale (µ0 is the vacuum magnetic permeability), and
the double prime stands for the second derivative of
bx with respect to x.

2. Ohm’s law
While deriving Eq. (1) in the standard approach, it is
assumed that ∇2bx ≈ b′′x. However, this assumption
clearly implies γτD � (ka)2. This means that as soon
as γτD ∼ (ka)2, such a long wave length limit cannot
be justified. At shorter wave lengths, inertial effects
due to charged species in the plasma can become
important. In this case, the standard form of Ohm’s
law must be corrected by a time dependent term
(a still more general formula should include ion and
electron pressure gradients, as well as the Hall effect
[18–21], however, those terms are not relevant for our
purposes),

~E + ~V × ~B = η

(
1 + τC

∂

∂t

)
~J, (2)

where ~E and ~B denote the electric and magnetic fields,
respectively, and ~V and ~J represent the fluid flow and
current density, respectively.

For singly ionized, approximately neutral, resistive
plasmas, τC = me/(nee

2η), where me, ne, and e de-
note the electron mass, number density, and charge,
respectively. Actually, τC can be interpreted as the
finite relaxation time of the current density flowing
in the plasma. Indeed, if ~E and ~B are suddenly re-
moved from the presence of the fluid, then Eq. (2)
shows that ~J(t) = ~J(0) exp(−t/τC), i. e., the initial
current density ~J(0) damps off in the plasma, in a
finite time interval of the order of τC. In the limit
τC → 0, the initial current ~J(0) is instantaneously
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damped, inertial effects are negligible, and sufficiently
long wave lengths are enough to characterize the time
dependence of the fields. In this case, Eq. (2) recovers
the standard form of Ohm’s law, ~E + ~V × ~B = η ~J .

3. Basic equations
By introducing Eq. (2) in the problem, Eq. (1) is
corrected to[
γ + (1 + γτC)

τD/(ka)2

]
bx = ıµ0J0kxvx+ (1 + γτC)b′′x

τD/a2 . (3)

Linearization of the equation of motion shows that
the x-component of the perturbative velocity field, vx,
satisfies the expression

γρ0v
′′
x = ıJ0kxb

′′
x, (4)

where ρ0 denotes the (constant) mass density of the
fluid which is assumed to be incompressible. Eqs. (3)
and (4) are the basic equations for our approach.

4. Growth rate
The system of the two coupled differential equations
(3) and (4) has to be solved both in the outer (ideal)
and inner (resistive) plasma regions, and then the
found solutions must be matched on the boundaries of
the slab, at | x |= a/2. In the linear theory of tearing
modes, one shows that this condition is satisfied by
requiring that the logarithmic jump

∆′ = 1
bx

∫ 0+

0−

b′′xdx (5)

of the x-component of the perturbative magnetic field,
bx, across x = 0 (in the so-called resistive layer), be
the same for both solutions (the so-called constant
magnetic flux limit).

Except for much simplified equilibrium models (re-
call, for instance, the well-known Harris model [22]),
Eq. (5) has to be treated numerically in the ideal
plasma region [23–27]. However, ∆′ can be evaluated
analytically in the resistive layer, with the help of
a number of mathematical techniques. By following
Goldston and Rutherford [28], one may easily check
that the logarithmic jump satisfies the general disper-
sion relation

∆′a
2.12 =

[
γτD + (1 + γτC)(ka)2

γτD(1 + γτC)3/4

]
γ5/4τ

3/4
D τ

1/2
A (6)

in the resistive layer, where use has been made of
Gamma functions [29] in order to compute the integral
in Eq. (5). In Eq. (6), we have introduced the Alfvén
time τA = a/VA, with VA = (J0/k)

√
µ0/ρ0 standing

for the Alfvén speed. We see that if ∆′ > 0, then
γ > 0 too, and thus the latter can be interpreted as
the growth rate of the unstable modes.

5. Asymptotic scalings
In the long wavelength limit, γτD � (ka)2, inertial
effects, due to charged species in the plasma, can be
neglected, γτC � 1, and Eq. (6) approaches

∆′a
2.12 = γ5/4τ

3/4
D τ

1/2
A . (7)

We see that Eq. (7) recovers the standard result of the
linear theory of tearing modes, which establishes that
the growth rate γ scales with the plasma resistivity η
as γ ∼ η3/5 [1].
However, in the opposite short wavelength limit,

γτD � (ka)2, inertial effects can become important
and Eq. (6) can be approximated to

∆′a
2.12 = (1 + γτC)1/4(ka)2γ1/4τ

−1/4
D τ

1/2
A . (8)

Interestingly, we see that the influence of inertia pro-
vokes a significant change on the scaling of the growth
rate with the relevant plasma parameters. Notwith-
standing, Eq. (8) does not determine the dependence
of γ on the inertial parameter τC. To circumvent this
difficulty, we propose to further rediscuss the prob-
lem by making use of the so-called boundary layer
technique [30]. This technique can promote the rescal-
ing of Eqs. (3) and (4) through the identification
of a parameter which, although be irrelevant in the
ideal region, can become relevant in the resistive layer.
This parameter can be identified through the com-
parison of the order of magnitude of the various time
scales involved. The proposed approach may provide
the scaling of γ with τC when inertial effects become
important, at sufficiently short wavelengths.

6. Conclusion
In this work, we have explored inertial effects, due to
charged species in a resistive plasma, on the tearing
instability. The standard theory of tearing modes
assumes a long wavelength limit, as shown by Eq. (1).
At shorter wave lengths, inertial effects can become
important and Ohm’s law must be corrected to Eq.
(2). The introduction of such a correction into the
problem has led to a general dispersion relation, as
shown by Eq. (6).

In the long wave length limit, we have recovered the
standard scaling of the growth rate γ with the plasma
resistivity η, namely γ ∼ η3/5. However, in the short
wavelength limit, we have found that the scaling of γ
with the relevant plasma parameters changes signif-
icantly due to the influence of inertia. Nevertheless,
the dependence of γ on the inertial parameter τC is
not determined. In order to achieve such a description,
we propose to further rediscuss the problem in the
framework of the boundary layer technique.
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