Hydrophobization of Track Membrane Surface by Magnetron Sputter Deposition of Ultra-high Molecular Weight Polyethylene

Authors

  • L. Kravets Joint Institute for Nuclear Research, Flerov laboratory of Nuclear Reactions, Joliot-Curie Str. 6, 141980 Dubna
  • V. Altynov Joint Institute for Nuclear Research, Flerov laboratory of Nuclear Reactions, Joliot-Curie Str. 6, 141980 Dubna
  • R. Gainutdinov Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" of RAS, Leninskii Pr. 59, 119333 Moscow
  • N. Lizunov Joint Institute for Nuclear Research, Flerov laboratory of Nuclear Reactions, Joliot-Curie Str. 6, 141980 Dubna
  • V. Satulu National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Bucharest
  • B. Mitu National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Bucharest
  • G. Dinescu National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Bucharest

DOI:

https://doi.org/10.14311/ppt.2020.1.10

Keywords:

track-etched membrane, magnetron sputter deposition of polymers, ultra-high molecular weight polyethylene, hydrophobization, bilayer composite membranes

Abstract

Method for the formation of polymer coatings on the poly(ethylene terephthalate) track-etched membrane surface by magnetron sputter deposition of ultra-high molecular weight polyethylene in a vacuum is considered. The surface morphology and chemical structure of nanoscale coatings have been investigated. It is shown that the application of the ultra-high molecular weight polyethylene-like coatings leads to hydrophobization of the membrane surface, the degree of which depends on the coating thickness. Besides, the usage of this modification method leads to smoothing of structural inhomogeneity of the membrane surface, a decrease in pore diameter, and alteration of pore shape. The investigation of the chemical structure of deposited coatings by XPS method showed that they contain a significant concentration of oxygen-containing functional groups. The composite membranes of the developed sample can be used in the process of desalination of seawater by the method of membrane distillation.

References

M. Qtaishat, M. Khayet, and T. Matsuura. Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation. J. Membr. Sci., 329(1):193–200, 2009. doi:10.1016/j.memsci.2008.12.041.

M. Essalhi and M. Khayet. Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation. J. Membr. Sci., 417:163–173, 2012. doi:10.1016/j.memsci.2012.06.028.

M. Bryjak and I. Gancarz. Membrane prepared via plasma modification. In Membranes for membrane reactors: preparation, optimization and selection, chapter 25. Chichester (UK): John Wiley and Sons., 2011.

L. I. Kravets, A. B. Gilman, and G. Dinescu. Modification of polymer membrane properties by low-temperature plasma. Rus. J. Gener. Chem., 85(5):1284–1301, 2015. doi:10.1134/S107036321505045X.

L. Kravets, S. Dmitriev, N. Lizunov, V. Satulu, B. Mitu, and G. Dinescu. Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors. Nucl. Instr. Meth. B., 268(5):485–492, 2010. doi:10.1016/j.nimb.2009.11.014.

L. I. Kravets, S. N. Dmitriev, V. Satulu, B. Mitu, and G. Dinescu. Structure and electrochemical properties of track membranes with a polymer layer obtained by plasma polymerization of acetylene. J. Phys.: Confer. Ser., 516(1):012006, 2014. doi:10.1088/1742-6596/516/1/012006.

L. I. Kravets, A. B. Gilman, V. Satulu, B. Mitu, and G. Dinescu. Formation of diode-like composite membranes by plasma polymerization. Inorg. Mater. Appl. Res., 9(2):162–174, 2018. doi:10.1134/S207511331802017X.

H. Yasuda. Plasma polymerization. Academic Press, Orlando, Florida., 1985.

A. A. Rogachev, S. Tamulevicius, A. V. Rogachev, M. A. Yarmolenko, and I. Prosycevas. The structure and molecular orientation of polytetrafluoroethylene coatings deposited from active gas phase. Appl. Surf. Sci., 255(15):6851–6856, 2009. doi:10.1016/j.apsusc.2009.03.004.

M. Drabik, O. Polonskaya, O. Kylian, J. Cechvala, A. Artemenko, I. Gordeev, A. Choukourov, D. Slavinska, I. Matolinova, and H. Biederman. Syper-hydrophobic coatings prepared by RF magnetron sputtering of PTFE. Plasma Process Polym., 7(7):544–551, 2010. doi:10.1002/ppap.200900164.

P. Y. Apel and S. N. Dmitriev. Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv. Natur. Sci.: Nanosci. Nanotechnol., 2(1):013002, 2011. doi:10.1088/2043-6262/2/1/013002.

V. Satulu, B. Mitu, A. M. Pandele, S. I. Voicu, L. I. Kravets, and G. Dinescu. Composite polyethylene

terephthalate track membranes with thin teflon-like layers: preparation and surface properties. Appl. Surf.

Sci., 476:452–459, 2019. doi:10.1016/j.apsusc.2019.01.109.

M. Mulder. Basic principles of membrane technology. Dordrecht: Kluwer Acad. Publ., 1996.

D. Briggs and J. T. Grant. Surface analysis by auger and X-ray photoelectron spectroscopy. Chichester: IM Publ., 2003.

L. I. Kravets, M. A. Yarmolenko, A. A. Rogachev, R. V. Gainutdinov, V. A. Altynov, and N. E. Lizunov. Deposition of double-layer coatings for preparing composite membranes with superhydrophobic properties. High Temp. Mater. Proc., 23(1):77–96, 2019. doi:10.1615/hightempmatproc.2019030269.

Downloads

Published

2020-06-11

Issue

Section

Articles