Time evolution of the process of doping of solids by plasma-ion beams


  • A. Horodeński National Centre for Nuclear Research
  • C. Pochrybniak National Centre for Nuclear Research




plasma, ion beam, implantation, doping, time evolution, energy distribution, stopping power


Irradiation of a solid with intense plasma-ion beams produced within a high vacuumchamber (by the so-called Rod Plasma Injector [1]) is a strongly nonequilibrium process, which enablesachieving a number of effects which are impossible to be achieved with other methods. These are,amongst other: improvement of ceramics wettability, fabrication of stable copper-ceramics interfacesand stable Ni-Cu and Al-Cu interfaces, improvement of tribological properties and high temperatureoxidation resistance of stainless steel, photovoltaic junction formation, and many others. In the paper,the process of plasma-ion beam propagation regarding its time and energy distributions and the processof ion penetration of solids, resulting with ion implementation and temperature growth have beenanalyzed mathematically on basis of experimental data. Results of numerical calculations have beenpresented concerning temperature and dopant density time evolution.


M. Gryziński. A new device for creating a stronglyfocused hot plasma jet–Rod Plasma Injector (RPI).Nukleonika, XIV(7-8):679–705, 1969.

J. Piekoszewski, Z. Werner, C. Pochrybniak,J. Langner, M. Gryzinski, and A. Horodenski. Pulse IonBeam Doping and Modification of Solids.PhysicaStatus Solidi (a), 112(2):757–760, 1989.doi:10.1002/pssa.2211120237.

M. Barlak, J. Piekoszewski, J. Stanisławski, Z. Werner,and K. Borkowska. The effect of intense plasma pulsepre-treatment on wettability in ceramic–copper system.Fusion Engineering and Design, 82(15–24):2524–2530,2007.doi:10.1016/j.fusengdes.2007.08.010.

M. Barlak, J. Piekoszewski, Z. Werner, andJ. Stanislawski. Wettability improvement of carbonceramic materials by mono and multi energy plasmapulses.Surface and Coatings Technology,203(17–18):2536–2540, 2009.doi:10.1016/j.surfcoat.2009.02.070.

M. Barlak, J. Piekoszewski, Z. Werner, B. Sartowska,W. Starosta, J. Kierzek, C. Pochrybniak, andE. Kowalska. Wettability of carbon and silicon carbideceramics induced by their surface alloying with Zr andCu elements using high intensity pulsed plasma beams.Nukleonika, 57(4):477–483, 2012.

M. Barlak, W. Olesinska, J. Piekoszewski, Z. Werner,and M. Chmielewski. Ion beam modification of ceramiccomponent prior to formation of AlN-Cu joints bydirect bonding process.Surface and CoatingsTechnology, 201(19–20):8317–8321, 2006.doi:10.1016/j.surfcoat.2006.01.090.

J. Langner, J. Piekoszewski, C. Pochrybniak,F. Rosatelli, S. Rizzo, J. Kucinski, A. Miotello, L. A.Guzmán, and P. Lazzeri. Deposition by pulsed erosionof nickel and aluminum on copper.Surface andCoatings Technology, 66(1–3):300–304, 1994.

B. Sartowska, W. Starosta, M. Barlak, and L. Waliś.Modification of zirconium alloy surface using highintensity pulsed plasma beams.Archives of MaterialsScience and Engineering, 77(2):53–57, 2016.doi:10.5604/18972764.1225592.

B. Sartowska, J. Piekoszewski, L. Waliś, J. Senatorski,M. Barlak, and W. Starosta. Improvement oftribological properties of stainless steel by alloying itssurface layer with rare earth elements using high intensity pulsed plasma beams. Surface and CoatingsTechnology, 205:S124–S127, 2011.doi:10.1016/j.surfcoat.2011.04.082.

J. Piekoszewski, B. Sartowska, M. Barlak,P. Konarski, and L. Dąbrowski. Improvement of hightemperature oxidation resistance of AISI 316L stainlesssteel by incorporation of Ce–La elements using intensepulsed plasma beams.Surface and Coatings Technology,206(5):854–858, 2011.doi:10.1016/j.surfcoat.2011.03.104.

J. Piekoszewski, W. Kempiński, M. Barlak,J. Kaszyński, and J. Stanisławski. Superconducting andelectrical properties of Mg–B structures formed byimplantation of magnesium ions into the bulk boronfollowed by pulse plasma treatment.Vacuum,81(10):1398–1402, 2007.doi:10.1016/j.vacuum.2007.01.054.

Z. Werner, C. Pochrybniak, M. Barlak,J. Piekoszewski, A. Korman, R. Heller, W. Szymczyk,and K. Bochenska. Implanted manganese redistributionin Si after He+irradiation and hydrogen pulse plasmatreatment.Nukleonika, 56(1):5–8, 2011.

J. Piekoszewski, J. Langner, J. Białoskórski,B. Kozłowska, C. Pochrybniak, Z. Werner,M. Kopcewicz, L. Waliś, and A. Ciurapiński.Introduction of nitrogen into metals by high intensitypulse ion beams.Nuclear Instruments and Methods inPhysics, Research Section B Beam Interactions withMaterials and Atoms, 80–81:344–347, 1993.

J. Piekoszewski, M. Gryzinski, J. Langner, Z. Werner,and G. Huth. A new approach to photovoltaic junctionformation by using pulse implantation doping technique.J. Phys. France, 43:1353–1358, 1982.

M. Gryziński. Koncepcja prętowego(magnetoelektrycznego) działa plazmowego „DP”.Instytut Badań Jądrowych, Raport INR No711/XVIII/PP, Warszawa, 1966.

J. Nowikowski and L. Jakubowski. Investigations ofRPI in dynamic gas condition.Nukleonika,XXI(11-12):1227–1240, 1976.

K. Malinowski.Experimental Investigation andComputer Simulations of an Ion Emission of theRPI-IBIS Plasma Accelerator. PhD Thesis. NationalCenter for Nuclear Research, 2012.

E. Skladnik-Sadowska, M. Sadowski, andJ. Baranowski. Investigation of convergent deuteronbeams within a penetrable electrode system.Proc. 15thEuropean Conf. on Controlled Fusion and PlasmaHeating, Dubrovnik, 12B(Part II):633–636, 1988.

M. Sadowski, J. Baranowski, E. Skladnik-Sadowska,V. Borisko, O. Byrka, V. Tereshin, and A. Tsarenko.Characterization of pulsed plasma-ion streams emittedfrom RPI-type devices applied for material engineering.Applied Surface Science, 238:433–437, 2004.doi:10.1016/j.apsusc.2004.05.167.

R. Kwiatkowski. Preliminary Measurements ofEnergy Distribution of Ions Emitted by IBIS-II PlasmaSource.NCNR Internal Report, National Center forNuclear Research, 2018.

A. Horodeński. Evaluation of Pulse Shape of IonBeams Produced by the Ionotron-Type Ion Sources.Physica Status Solidi (a), 112(2):821, 1989.doi:10.1002/pssa.2211120251.

Stopping power of matter for ions. https://www-nds.iaea.org/stopping/stopping_heav.html, Nuclear Data Services, International Atomic EnergyAgency.

New semiconductor materials. characteristics andproperties. Ioffe Physico-Technical Institute,http://www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html.

Vapor pressure calculator. Technische UniversitätWien, Institut für Angewandte Physik,https://www.iap.tuwien.ac.at/www/surface/vapor_pressure.

N. M. Ravindra, B. Sopori, O. H. Gokce, S. X.Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, andY. Zhang. Emissivity measurements and modeling ofsilicon-related materials: An overview.InternationalJournal of Thermophysics, 22(5):1593–1611, 2001.doi:10.1023/A:1012869710173.

A simple sputter yield calculator. TechnischeUniversität Wien, Institut für Angewandte Physik,https://www.iap.tuwien.ac.at/www/surface/sputteryield.64