Complementary Experimental and Simulation-based Characterization of Transient Arcs

Authors

  • M. Baeva Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • R. Methling Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • D. Gonzalez Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • S. Gortschakow Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • A. Ehrhardt DEHN SE + Co KG, Hans-Dehn-Strasse 1, 92318 Neumarkt, Germany
  • S. Schmausser DEHN SE + Co KG, Hans-Dehn-Strasse 1, 92318 Neumarkt, Germany
  • O.Schneider DEHN SE + Co KG, Hans-Dehn-Strasse 1, 92318 Neumarkt, Germany

DOI:

https://doi.org/10.14311/ppt.2023.2.56

Keywords:

surge protection devices, spectroscop, high-speed imaging, surge current pulses, over voltage, radiative transport

Abstract

Electric arcs generated by transient lightning-type surge currents in protection devices for low voltage appliances are studied by optical emission spectroscopy and spectra simulations. A surge pulse amplitude of 5kA and 8/20µs shape are applied. The arc radiation is recorded by a 3/4m spectrometer and a high-speed camera equipped with metal interference filters for the O I (777nm) and Hα (656nm) lines. Absolute calibration was realized using a tungsten strip lamp. The arc images indicate a non-symmetrical shape. To determine the plasma properties, accompanying simulation solving the equation of radiative transfer for a given pressure and a temperature profile was carried out assuming local thermodynamic equilibrium. Line broadening due to the Stark effect is taken into account. The computed and measured spectra are compared. The conditions are varied until the measured and computed spectra match.

References

A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modelling. J. Phys. D.: Appl. Phys., 38(9):R153–R183, 2005. doi:10.1088/0022-3727/38/9/R01.

P. Freton and J. J. Gonzalez. Overview of current research into low-voltage circuit breakers. The Open Plasma Phys. J, 2:105–119, 2009. doi:10.2174/1876534300902010105.

F. Yang, Y. Wu, M. Rong, et al. Low-voltage circuit breaker arcs – simulation and measurements. J. Phys. D.: Appl. Phys., 46(273001), 2013. doi:10.1088/0022-3727/46/27/273001.

M. Lindmayer. Remarks concerning arc roots in CFD modellig of switching arcs. Int. Conf. Electrical Contacts, 2021.

M. F. Modest. Radiative heat transfer. Elsevier Inc., Amsterdam, 2013. ISBN 978-0-12-386944-9.

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team (2022). NIST Atomic Spectra Database (version 5.10), National Institute of Standards and Technology, Gaithersburg, MD., 2022.

H. R. Griem. Spectral line broadening by plasma. Academic Press, New York and London, 1974. ISBN 9780323150941.

Downloads

Published

2023-08-31

Issue

Section

Articles