Numerical simulation of vacuum arc under different axial magnetic fields and different erosion rates

Authors

  • C. Simonnet Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 - 31062 Toulouse cedex 9, France
  • P. Freton Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 - 31062 Toulouse cedex 9, France
  • J. J. Gonzalez Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 - 31062 Toulouse cedex 9, France
  • F. Reichert Laboratoire plasma et conversion d’énergie (Laplace) UMR 5213 - CNRS - Toulouse INP - UT3 Université Toulouse 3 - Paul Sabatier 118, route de Narbonne - bât 3R3 - 31062 Toulouse cedex 9, France
  • A. Petchanka Siemens Energy, Paulsternstr. 26, 13629, Berlin, Germany

DOI:

https://doi.org/10.14311/ppt.2024.1.12

Keywords:

numerical simulation, plasma, subsonic regime, vacuum circuit breaker

Abstract

In this paper, we present a three-dimensional (3D) numerical model that describes a high current vacuum arc in the subsonic regime between copper contacts under the influence of an axial magnetic field (AMF). The model is based on a MHD approach to the inter-electrode plasma and is realized with the commercial software Ansys Fluent. Only the plasma region is modelled. The behaviour of the copper electrodes is taken into account by specific boundary conditions. We describe the model, the boundary conditions and present the simulation results. Temperature profiles and electron and ion densities will be presented in a reference case. Based on this arc modelling, a parametric study on arc characteristics will be performed, including varying the AMF strength, the ablation rate and the current intensity.

References

R. Renz, D. Gentsch, H. Fink, et al. Vacuum interrupters-sealed for life. In CIRED-19th Int. Conf. on Electricity Distribution, number 0156, 2007.

N. Wenzel, S. Kosse, A. Lawall, et al. Numerical simulation of multi-component arcs in high-current vacuum interrupters. In 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), pages 321–324. IEEE, 2012. doi:10.1109/DEIV.2012.6412518.

E. Schade and D. L. Shmelev. Numerical simulation of high-current vacuum arcs with an external axial magnetic field. IEEE Transactions on Plasma Science, 31:890–901, 10 2003. doi:10.1109/TPS.2003.818436.

Y. Langlois, P. Chapelle, A. Jardy, and F. Gentils. On the numerical simulation of the diffuse arc in a vacuum interrupter. Journal of Applied Physics, 109, 6 2011. doi:10.1063/1.3587180.

W. Hartmann, A. Hauser, A. Lawall, et al. The 3D numerical simulation of a transient vacuum arc under realistic spatial AMF profiles. In 24th ISDEIV 2010, pages 285–288. IEEE, 2010. doi:10.1109/DEIV.2010.5625791.

S. Jia, L. Zhang, L. Wang, et al. Numerical simulation of high-current vacuum arcs under axial magnetic fields with consideration of current density distribution at cathode. IEEE Transactions on Plasma Science, 39(11):3233–3243, 2011. doi:10.1109/TPS.2011.2166565.

S. Braginskii. Transport processes in a plasma. In Reviews of plasma physics, volume 1, page 205. Consyltants Bureau, New York, 1965.

L. Wang, S. Jia, L. Zhang, et al. Current constriction of high-current vacuum arc in vacuum interrupters. Journal of Applied Physics, 103(6):063301, 2008. doi:10.1063/1.2875813.

L. Wang, S. Jia, Z. Shi, and M. Rong. High-current vacuum arc under axial magnetic field: Numerical simulation and comparisons with experiments. Journal of Applied Physics, 100, 2006. doi:10.1063/1.2388734.

X. Chen and E. Pfender. Effect of the knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chemistry and Plasma Processing, 3, 1983. doi:10.1007/BF00566030.

J. Kutzner and H. C. Miller. Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc. Journal of Physics D: Applied Physics, 25(4):686, 1992. doi:10.1088/0022-3727/25/4/015.

Ansys Fluent Software Foundation. Ansys fluent. URL: https://www.ansys.com/fr-fr/products/fluids/ansys-fluent.

Downloads

Published

2024-05-29

Issue

Section

Articles