Thermophysical Properties of Air-PA66-Copper Plasmas for Low-Voltage Direct Current Switches

Authors

  • Y. Cressault LAPLACE, University Toulouse III Paul Sabatier, Toulouse, France
  • S. Kimpeler IAEW at RWTH Aachen University, Aachen, Germany
  • A. Moser IAEW at RWTH Aachen University, Aachen, Germany
  • P. Teulet LAPLACE, University Toulouse III Paul Sabatier, Toulouse, France

DOI:

https://doi.org/10.14311/ppt.2023.1.52

Keywords:

Thermal plasmas properties, transport coefficients, Net emission coefficient, Local thermodynamic equilibrium

Abstract

This paper presents the thermophysical properties of an air-PA66-copper mixture in thermal plasma. Equations based on mass action law, conservation of neutrality and perfect gas law are used to calculate particle number densities. Thermodynamic properties and transport coefficients were obtained from equilibrium compositions and computed using the Chapman-Enskog method. Radiative properties are described in terms of the total absorption coefficient and the net emission coefficient

References

D. Godin and J. Y. Trépanier. An Effecient Method for the Computation of Equilibrium Composition in Gaseous Mixture. In 14th International Symposium on Plasma Chemistry, page 1239. 1999.

Y. Cressault, V. Connord, H. Hingana, et al. Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers. J. Phys. D: App. Phys., 44(49), 2011. doi:10.1088/0022-3727/44/49/495202.

J. O. Hirschfelder, C. F. Curtis, and R. B. Bird. Molecular theory of gases and liquids. 2nd Edition. John Wiley and Sons, New York, 1964.

Y. Cressault and A. Gleizes. Thermodynamic properties and transport coefficients in Ar-H2-Cu plasmas. J. Phys. D: App. Phys., 37(21):560–572, 2004. doi:10.1088/0022-3727/37/4/008.

Y. Cressault, A. Gleizes, and G. Riquel. Properties of air-aluminum thermal plasmas. J. Phys. D: App. Phys., 45(26), 2012. doi:10.1088/0022-3727/45/26/265202.

J. Aubreton. Etude des propriétés thermodynamiques et de transport dans des plasmas thermiques à l’équilibre et hors d’équilibre thermodynamique: application aux plasmas de mélange Ar-H2 et Ar-O2. PhD Thesis. University of Limoge, 1985.

J. Aubreton and P. Fauchais. Influence des potentiels d’intéraction sur les propriétés de transport des plasmas thermiques: exemple d’application le plasma argon hydrogéne a la pression atmosphérique. Rev. Phys. Appl., 18(1):51–66, 1983. doi:10.1051/rphysap:0198300180105100.

J. Aubreton, M. F. Elchinger, and J. M. Vinson. Transport Coefficients in Water Plasma: Part I: Equilibrium Plasma. Plasma Chem Plasma Proc, 29(2):149–171, 2009. doi:10.1007/s11090-008-9165-8.

J. Aubreton, M. F. Elchinger, A. Hacala, and U. Michon. Transport coefficients of typical biomass equimolar CO-H2 plasma. Journal of Physics D: Applied Physics, 42(9), 2009. doi:10.1088/0022-3727/42/9/095206.

D. R. Lide. CRC Handbook of chemistry and physics: A Ready reference book of chemical and physical Data. 82nd edn. Boca Raton, FL: CRC Press, 2001.

P. André, L. Brunet, W. Bussiere, et al. Transport coefficients of plasmas consisting of insulator vapours - Application to PE, POM, PMMA PA66 and PC. Eur. Phys. J. Appl. Phys., 25(3):169–182, 2004. doi:10.1051/epjap:2004007.

A. Gleizes, Y. Cressault, and P. Teulet. Mixing rules for thermal plasma properties in mixture of argon, air and metallic vapours. Plasma Sources Sci. Technol., 19(5), 2010. doi:10.1088/0963-0252/19/5/055013.

Y. Cressault. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling. AIP Advances, 5(5), 2015. doi:10.1063/1.4920939.

Downloads

Published

2023-08-08

Issue

Section

Articles