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Abstract. The electric arc discharge in a liquid medium is used in several applications such as the
sterilization of the liquid by UV radiation, the fracturing of rocks by shock wave, the circuit breakers
in oil bath or the forming of mechanical parts. Thus, describing the physics of the arc in a liquid
and in particular its interaction with a liquid interface is an important issue to better characterize
this type of configuration. However, such a challenging task requires to couple high-fidelity solver for
compressible two-phase flows with liquid phase change and a plasma solver to describe the plasma and
its interaction with the bubble. To study this type of medium, we use a compressible formulation of the
fluid equations. For this purpose, a pressure based solver has been developed for the computation of
the energy conservation equation. Moreover, our numerical model uses the immersed boundary method
to simulate the solid electrodes. The numerical model is briefly described in this paper and the first
results of the electric arc discharge in steam water are presented. To our knowledge this pressure based
model has never been used to describe plasmas and electric arc discharge.
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1. Introduction
Numerical Simulations is a powerful tool which can
be complementary to experiments for a better under-
standing of the plasma behavior in water. The electric
arc in liquid water creates a centimeter-sized bubble
of plasma and acoustic waves. The simulation based
on commercial CFD solvers, as Fluent, can hardly sim-
ulate the interaction between, the acoustic waves, the
plasma and two-phase flows. When dealing with simu-
lation of compressible flows one have to be careful for
the numerical stability at different Mach numbers [1].
We can achieve an asymptotically preserving solution
through compressible semi-implicit solvers based on
pressure [2]. The compressible entropic two-phase flow
solver, developed in [3] seem adapted for the prob-
lem at hand. In particular, the formulation of the
energy conservation equation based on the pressure
variable is suitable to describe acoustic waves, which
are described implicitly, while being well suited to
describe two-phase flows. The objective is verify the
aptitude of these solvers to correctly simulate plasma
flows. This solver is integrated in the home made code
DIVA [4] in which specific plasma solvers have also
been integrated. Moreover, this compressible solver is
coupled to an immersed boundary method to account
for complex geometry, as the solid surface of the elec-
trodes [5]. We describe in this paper some preliminary
results obtained with our solver on single-phase flows
with acoustic waves in presence of an electrical arc
between two electrodes in a water gas medium. Fu-
ture developments on the extension of our solver to

compressible two-phase flows with liquid-vapor phase
change are also discussed.

2. Hypotheses
□ 2 Dimensional and axisymmetric hypothesis.
□ Local Thermodynamical Equilibrium (LTE) for

plasma
□ Laminar flow
□ No sheath description
□ No numerical resolution inside the solid material.
□ Only the water gas phase is considered in the mod-

eling

3. Theory
We present in this section the physical model for
compressible flows which has been coupled to the
Immersed Boundary Method developed in [5]. The
formulation of the energy equation is pressure based,
and equations of state accounting for a gas and plasma
state enable to compute the temperature field from
the density and pressure fields obtained by solving
conservation equations. The model uses the equa-
tions of conservation of mass, momentum and energy
described here:

The mass equation for the change of density ρ:

∂ρ

∂t
+ ∇ · (ρu⃗) = 0. (1)

The momentum equation to compute the velocity
field u⃗:
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Du⃗

Dt
+ ∇p

ρ
= 1

ρ
∇ · τ + g⃗. (2)

The volume forces coefficient is g⃗ in this particular
case it is the gravitational acceleration. The viscosity
tensor is τ and the viscosity coefficient is µ:

τ = µ(∇u⃗ + ∇u⃗T ) − 2
3µ∇ · u⃗I. (3)

The pressure based energy equation for the pressure
p, proposed in [3], can be expressed as:

Dp

Dt
= c2 Dρ

Dt
+ ∂p

∂s

∣∣∣∣
ρ

Ds

Dt
. (4)

Here s is the entropy D
Dt is the material derivative, c

is the speed of sound. The left hand side representing
the evolution of pressure. On the right hand side
the first term is associated to acoustic waves, and
the second one is associated to heat transfer. The
term responsible for the acoustic propagation c2 Dρ

Dt is
solved implicitly. Instead of the time step dt = dx

u+c ,
numerical stability is ensured with dt = dx

u where
u is the speed of the fluid. This is an advantage in
the plasma medium in which the sound speed can
reach very large values, such as 10 km/s which would
involve very small values of the time step with classical
compressible solver. This pressure based solver allows
stability gain of the solver while being able to describe
acoustic waves. To solve these equations, we use
classical second order finite volume schemes for the
spatial discretization, except the convection terms (−→u ·
∇)(−→u ) which are solved using a fifth-order WENO-Z
(weighted essentially non-oscillatory) method [6].

To close our system of equations, an equation of
state is required. Although, the present work is fo-
cused on electrical arc in a single-phase flow, cubic
equations of state have been implemented since they
allow to model the thermodynamics state, both in a
gas phase and a liquid phase, as shown in [3]. This will
be an asset for coming works on electrical arc in a liq-
uid pool. For higher temperatures when dissociation
of the molecules happen, data tables are implemented
in our solver for a more accurate description of the
density, temperature and pressure in the plasma state.
These data tables are obtained using a solver based
on minimization of energy.

An electric current with a linear profile is imposed
on half of the radius of the upper electrode and the
lower electrode is at a reference potential taken to be
zero. The boundary conditions on the electric field
are imposed on the electrodes using the Immersed
Boundary Method and the lateral conditions impose
an electrical insulation n⃗ · ∇V = 0 with n⃗ being the
normal vector, here V is the electric potential. Solving
the following equation gives the electric potential field
which is coupled to the conductivity coefficient σ

∇ · (σ∇V ) = 0. (5)

It is noteworthy that the voltage drop deduced by
the model only represents the column contribution
as the sheathes description is not included in our
model. From the electric potential field computation,
the electric current density field J⃗ is computed in
the fluid and the corresponding heat release due to
Joule effect J⃗J⃗

σ measured in W
m3 is included as a source

term in the pressure equation Ds
Dt . The magnetic

field induced by the electric current is also taken
into account. This magnetic field is calculated using
a simplification, assuming that the electric current
is parallel to the symmetry axis of the cylindrical
electrodes. This allows to write simply the magnetic
field as:

B⃗ = µ0

R

∫ R

0
jz r dr, (6)

where B⃗(R) is the magnetic field, R is the radius
coordinate of the point in axisymmetric coordinate,
and jz is the electric current component parallel to
the axis of symmetry. The effect of this magnetic field
will be to deflect the charged fluid flow between the
electrodes. At the same time a constant current is
assumed inside the volume of the electrodes meaning
jz(r) is a constant, from which the magnetic field
created around the electrodes is deduced.

In the plasma phase the thermodynamical prop-
erties of plasma, depending on the local tempera-
ture and pressure, are extracted from tables. The
sound speed is computed with a simple perfect gas
law c =

√
γ p

ρ =
√

cp

cv

p
ρ , γ being the heat capacity

ratio, which is consistent with experimental data.
Radiation is included using the net emission coef-

ficient ϵ. The term 4πϵ is added to the change of
entropy term Ds

Dt .

4. Results
4.1. Acoustics
A first benchmark is proposed in order to illustrate
the capability of our compressible solver to describe
the interaction between an acoustic wave and a solid
complex geometry imposed with an Immersed Bound-
ary method. It consists in a long tube of air through
which an acoustic wave of an arbitrary pressure ampli-
tude propagates. Here the amplitude of the pressure
is taken at 100 Pa . The section of the tube is re-
duced at the middle of the domain, which generates
a reflected acoustic wave and a transmitted acoustic
wave. This behavior is highlighted in Figure 1, where
we can visualize the propagation of the acoustic wave
at different times: t = 0 ms, t = 0.75 ms, t = 1.9 ms,
and the formation of a reflected wave after the impact
of the incident wave with the section reduction. A
theoretical prediction of the amplitudes of both waves
can be obtained from a linear acoustic theory. The
reflection and transmission coefficients, which depend
on the section ratio, have been plotted in Figure 2
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Figure 1. Acoustic wave propagation in a tube. The
wave is propagated from right to left with a change
of section in the middle. After the incident wave im-
pacts at the section reduction, it splits into 2 waves:
transmitted wave going to the left and the reflected
wave going to the right. The figure times are: for
(a),t = 0 ms, for (b) t = 0.75 ms, for (c) t = 1.9 ms

where x-axis represents different section ratios. This
demonstrates a good agreement between the theory
and our numerical predictions.

Figure 2. Comparisons between numerical simulation
and linear acoustic theory on the transmission and
reflection coefficients. The point represent numerical
simulation for different section ratios of tubes and the
continuous graph represents the theoretical solution.

4.2. Plasma
We present in this subsection, some preliminary results
obtained with the overall solver which couples a solver
for compressible flow with an immersed boundary
method and a plasma solver to describe the electric arc.
The simulation is performed on an axisymmetric grid.

Figure 3. The temperature field between the black
electrodes taken 90 microseconds after the start of the
simulation.

The mesh is regular with a 40 micrometers cell size
which corresponds to a mesh containing 256×512 cells.
The gas used is water vapour at an initial pressure
slightly below atmospheric pressure 95800 Pa. The
computational domain is a cylinder of 1 cm radius and

Figure 4. Pressure wave traveling away from the elec-
trodes 6 microseconds after the start of the simulation
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Figure 5. The velocity streamlines 20 microseconds
after the start of the simulation. The streamlines are
superimposed on the temperature field.

2 cm height, and the electrodes are 3 mm apart and
have a radius of 1.5 mm. Neumann boundary condi-
tions are imposed on the temperature n⃗ · ∇T = 0 on
the electrodes. The initial conditions are an uniform
temperature everywhere except between the electrodes
where a hot canal of 7000 K is initialized to allow the
plasma formation at the beginning of the simulation.
We impose an electric current with a total intensity at
an arbitrary value of 100 A constant in time. In Fig-
ure 3, we can visualize, the temperature field and the
expansion of the plasma with a maximum temperature
around 20000 K in the vicinity of the electrode. The
solver has shown its ability to describe the pressure
wave in the test case in Figure 4. The arc ignition is
not represented in our model as the plasma is initial-
ized with a hot canal (7000 K) so the shock wave in
Figure 4 is only due to initial temperature difference
between the hot canal and the surrounding cold gas.
The velocity streamlines are presented in Figure 5.
Velocity between both electrodes has a typical mag-
nitude of 40 m.s−1. The electric potential and the
electric current streamlines are presented in Figure 6.
We can observe the current density distribution in the
plasma column. We can also observe that the total
voltage obtained is around 7 Volts. This value corre-
sponds to the column voltage as sheath description is
not taken into account.

5. Conclusion
In this paper, we have briefly described the numer-
ical solver that we are currently developing for the
interaction between an electric arc discharging in a
liquid pool and a plasma bubble. It combines a solver
for compressible flow with an Immersed Boundary
method to account for complex geometry in our com-
putational domain and a plasma solver for electric
arcs. Our solver enables to capture the generation of
acoustic waves and their interactions with the plasma

Figure 6. Electric potential field between the electrodes
represented with the color-map. The streamlines rep-
resent the passage of electric current.

medium. As the present work only considers a single
phase flow, future works will focus on its coupling with
a two-phase flow solver accounting for liquid-vapor
phase change, in order to predict the formation and
the growth of a plasma bubble in a liquid pool.
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