Multiphysical Simulation of Impulse Current Arcs in Spark Gaps for Industrial Applications

Authors

  • O. Schneider DEHN SE, Hans-Dehn-Strasse 1, 92318 Neumarkt, Germany
  • D. Gonzalez Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
  • A. Ehrhardt DEHN SE, Hans-Dehn-Strasse 1, 92318 Neumarkt, Germany

DOI:

https://doi.org/10.14311/ppt.2023.3.119

Keywords:

arc simulation, spark gap, impulse current, surge protection device, radiation heat transfer, magnetohydrodynamics

Abstract

Digital prototyping enables cost-effective production and modular optimization of surge protection devices (SPD). Numerical model of SPD prototypes involves complex multiphysics phenomena. However, the processes related to impulse current arcs in spark gaps are not well understood so far. Limited knowledge exists regarding hydrodynamic effects, plasma states, and radiation properties. This work studies an impulse current 8/20 µs with an amplitude of about 5 kA in experiment and simulation.

References

O. Schneider, A. Ehrhardt, B. Leibig, et al. Surge protection device digital prototyping. In 30th International Conference on Electrical Contacts, pages 486–493, Switzerland, 06 2021.

I. Murashov, V. Frolov, D. Uhrlandt, et al. Analysis of arc processes in multi-chamber arrester for lightning protection at high-voltage overhead power lines. Plasma Physics and Technology Journal, 4(2):124–128, 2017.

V. Frolov, D. Ivanov, A. Sivaev, and A. Chusov. Development of two-temperature mathematical model of processes in discharge chamber of multi-chamber arrester operating in conditions of mountain areas. Plasma Physics and Technology Journal, 6(2):135–139, 2019. doi:10.14311/ppt.2019.2.135.

Medividia BV. FlowVision Software. https://flowvisioncfd.com/en.

M. Baeva, M. Hannig, R. Methling, et al. Predictive capability and efficiency of 2D planar against 3D models of LV interrupters. In 31th International Conference on Electrical Contacts, Sapporo, 06 2022.

J. Zhong, F. Yang, W. Wang, et al. Net emission coefficient and radiation transfer characteristics of thermal plasma generated in nitrogen-ptfe vapor mixture. IEEE Transactions on Plasma Science, 46(4):990–1002, 2018. doi:10.1109/TPS.2018.2814399.

J. Huo, Y. Wang, and Y. Cao. 3D computational study of arc splitting during power interruption: The influence of metal vapor enhanced radiation on arc dynamics. Journal of Physics D: Applied Physics, 54, 10 2020. doi:10.1088/1361-6463/abc64b.

M. Baeva, R. Methling, D. Gonzalez, et al. Complementary experimental and simulation-based characterization of transient arcs. Plasma Physics and Technology Journal, 10(2):56–59, 2023. doi:10.14311/ppt.2023.2.56.

A. D’Angola, G. Colonna, C. Gorse, and M. Capitelli. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. European Physical Journal D, 46(1):129–150, 2008.

A. Mutzke. Lichtbogen-Simulation unter besonderer Berücksichtigung der Fußpunkte. PhD thesis, TU-Braunschweig, 2009.

V. Aubrecht and M. Bartlova. Radiation transfer in thermal plasmas of air, N2 and CO24. In 17th International Conference on Gas Discharges and Their Applications, 2008.

C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. Fraunhofer-Verl., Stuttgart, 2009.

R. Fuchs. Numerical arc simulations of radiatively-induced pmma nozzle wall ablation. In 30th International Conference on Electrical Contacts, pages 466–473, Switzerland, 06 2021.

N. Bogatyreva, M. Bartlova, and V. Aubrecht. Mean absorption coefficients of air plasmas. Journal of Physics: Conference Series, 275(1):012009, 01 2011. doi:10.1088/1742-6596/275/1/012009.

Downloads

Published

2023-09-04

Issue

Section

Articles