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Abstract. High fidelity numerical analyses of high-voltage gas circuit breakers have been conducted
at Hitachi Energy Research with an in-house CFD-based arc simulation tool. The tool extends the
capability of a commercial flow solver (ANSYS Fluent) to represent physical phenomena at play in a
high voltage circuit breaker during a breaking operation, such as magnetostatics, polymeric and metal
evaporation, and arc-network interaction. This work describes the implementation of the Biot-Savart
law for computing the magnetic field generated by an electric arc under the magnetostatic approximation
and in two–dimensional axisymmetric conditions. The implementation is compared to the reference
one based on the magnetic vector potential formulation of the Ampère’s law in the Coulomb gauge.
The limitations of the two formulations are discussed and their numerical accuracy compared.
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1. Introduction
The research and development of high-voltage circuit
breakers (HVCBs) rely on experimental and numerical
investigations. Experiments are quite expensive and
provide only a limited amount of information, typi-
cally in integral form and localized in single points. A
deeper insight into interruption phenomena can be ob-
tained with the help of computational fluid dynamics
(CFD). The arc simulation tool in use at Hitachi En-
ergy Research is based on a commercial CFD software
(ANSYS Fluent), whose capabilities are extended by
a library of user-defined functions to include magne-
tostatics, ablation, erosion, and arc-network coupling.
This work focuses on the physical and numerical as-
pects involved in the modeling of the self-induced
magnetic field in HVCBs with the magnetostatic ap-
proximation. Several authors developed numerical
methods to solve this problem. A comprehensive re-
view of these attempts is available in [1].

Given that most of the constitutive elements of
HVCBs possess rotational symmetry, these devices
are often simulated under the two–dimensional axisym-
metric (2D–axi) approximation, which yields indeed
accurate results in many applications. In this article,
a simple formulation is presented for computing the
magnetic fields generated by axisymmetric current
distributions. It is based on the Biot-Savart (BS)
law and is suitable for the implementation in ANSYS
Fluent. The results of this method are compared to
those obtained with the numerical integration of the
Ampère’s circuital law expressed in terms of magnetic
vector potential (MVP). Both numerical methods are
validated by reproducing the pressure measured in a
experiment in which an axisymmetric electric arc was
established. The physical model of the arc is detailed

in Section 2 with a special focus on the magneto-
static modeling. The numerical methods for solving
the magnetostatic problem are presented in Section
3 along with the comparison between numerical and
experimental results.

2. The physical model
The physical model characterizing the transient dy-
namics of the electric arc in a HVCB is expressed by
the following governing equations:

∂tρ+ ∇·(ρU) = Sm,tot (1)
∂t(ρU) + ∇·(ρU⊗U) = −∇p+∇·τ + j×B (2)
∂t(ρeo) + ∇·(ρUho) =∇·(τ ·U −q)+E ·j + Se,tot (3)
∂t(ρYi) + ∇·(ρUYi) = −∇·FFFi + Sm,i (4)
s ·∇Iλ = aλ(Ibλ − Iλ) (5)
∇· j = 0 (6)
∇ × B = µ0j (7)

along with the constitutive relationships for the elec-
tromagnetic and gas models. The symbols in the
above equations have the following meaning: ρ mass
density, U velocity vector, p pressure, τ stress ten-
sor, eo stagnation internal energy per unit mass,
ho = eo + p/ρ stagnation enthalpy per unit mass,
q = −∇ · (k∇T ) + qrad total heat flux, k thermal
conductivity, T temperature, qrad radiative heat flux,
j current density, E electric field, B magnetic field,
Sm,tot total mass source due to evaporation, and Se,tot
total energy source due to evaporation.

The relationships (1), (2), and (3) represent the
compressible Reynolds-averaged Navier-Stokes equa-
tions (RANS). The flow quantities in these equations
are averages from which the turbulent fluctuations
have been filtered out. The extra variables introduced
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by the averaging of the equations require other equa-
tions to be included in order to achieve the closure of
the system. These additional equations define the tur-
bulence model and are not reported in the system of
equations (1)–(7). Turbulence plays an important role
in defining the arc behavior and the way it is modeled
has a noticeable influence on the accuracy of simu-
lations conducted for HVCBs. Our CFD-based arc
simulation tool implements the kω-SST turbulence
model with Kato-Launder correction, as it showed
good accuracy in both the ablation controlled and
axially blown stages of the arcing process, for a wide
range of in-house validation studies.

The radiative energy emitted by the arc induces
evaporation from the surfaces of the nozzles that sur-
round the arcing contacts. Such nozzles are typically
made of polytetrafluoroethylene (PTFE) and their
ablation is described by the simple model provided
in [2]. The other main phase transition taking place
in HVCBs concerns the erosion of the arcing contacts,
which is modeled by an empirical law that links the
metal evaporation to the amount of current flowing
through the contacts [3].

The gas inside a HVCB is treated with a multi-
species one-fluid model under chemical equilibrium
(CE) and local thermodynamic equilibrium (LTE)
and its thermodynamic and transport properties have
been pre-computed with a Cantera-based tool [4]. The
same tool was used in conjunction with the databases
[5, 6] to build the absorption spectrum data necessary
for the integration of the radiative transfer equation
discussed below.

Equation (4) expresses the mass conservation for
the i–th species, where Yi is its mass fraction, FFFi its
diffusion flux due to concentration and temperature
gradients, and Sm,i is the source term expressing the
rate of creation the i–th species by evaporation.

The quasi-steady radiative transfer equation
(RTE) (5) allows to compute the spectral radiative
intensity Iλ for the wavelength λ and in the direction
of the unit vector s through a non-scattering medium
with absorption coefficient aλ. The term Ibλ indicates
the spectral radiative intensity for a blackbody. The
radiative heat flux that appears on the right-hand
side of (3) reads qrad =

∫ ∞
0

∫
4π
Iλ s dΩ dλ. The RTE

is solved according to the spectral integration method
reported in [7].

Regarding the electromagnetic aspects of plasma
arcs in HVCBs, we can reasonably assume that both
space charge neutrality and magnetostatic approxi-
mations apply. Equations (6) and (7) represent the
charge continuity equation and the Ampère’s law in
the context of said approximations. In the Ampère’s
law, µ0 = 4π · 10−7 H/m is the magnetic permeabil-
ity of vacuum, while for the relative permeability
the approximation µr ≃ 1 was made given the ab-
sence of magnetic materials in HVCBs. The magneto-
static equations are coupled with the RANS equation
through the Lorentz force per unit volume j × B and

the ohmic power per unit volume E · j. The coupling
is bidirectional as the RANS equations feed into the
charge continuity equation through the electrical con-
ductivity σ which is a function of p, T , and Yi. In
the following section, a physical model for the cur-
rent conservation will be illustrated along with two
approaches to the solution of the Ampère’s law: one
based on the MVP and the other on the axisymmetric
form of the BS law.

2.1. Physical modeling of the magnetostatics
By observing the governing equations above, it can
be noted that there are only two equations for the
three electromagnetic quantities E, j, B that appear
in them. The missing equation is provided by the
generalized Ohm’s law [8], which in the “small Lar-
mor radius” approximation, valid for plasma arcs in
HVCBs, reads j = σ(E + U × B). For HVCBs the
U × B term is negligible with respect to the elec-
tric field, hence, in the following we will assume that
j = σE. The Gauss’s law for magnetism ∇ · B = 0
is automatically fulfilled if the magnetic field is ex-
pressed as B = ∇ × A, where A designates the MVP.
Recalling the latter definition and introducing the
electric scalar potential φ, it can be noted the Fara-
day’s law of induction ∇ × E = −∂tB is satisfied by
expressing the electric field as E = −∇φ−∂tA, which
reduces to E = −∇φ under the present magnetostatic
approximation.

2.1.1. Current conservation
In view of the relationships introduced above, equation
(6) becomes

∇· (σ∇φ) = 0. (8)

The boundary conditions are ∂nφ = 0 on all bound-
aries, apart from the ground contact where φ = 0 is
imposed and the energized contact where φ = c1(t)
is set. The factor c1 is a function of time only
and it is determined so that at each time it holds∫

Sc
σ∇φ · n dS = −I(t), where Sc is the surface of

the energized contact through which the current I(t)
is flowing, while n is the unit vector normal to Sc
pointing into the computational domain.

2.1.2. MVP formulation
In view of the assumptions discussed above, by using
the Coulomb gauge ∇ · A = 0 and the vector identity
∇ × (∇ × A) = ∇ (∇ · A) − ∇2A, equation (7) can
be rewritten as

∇2A = −µ0j. (9)

The Poisson’s equation (9) admits the solution

A(r) = µ0

4π

∫
V

j (r′) dV ′

|r − r′|
(10)

which is computationally onerous for determining the
MVP in each point of the domain V , but it can be
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reasonably used for setting a Dirichlet boundary con-
dition for equation (9). An approximated approach
[9] for the boundary conditions takes advantage of
the comparatively large size of HVCBs and the fact
that A vanishes at infinity, as indicated by (10). In
such approach, a zero flux boundary condition is im-
posed for the components of A on all outer edges
of the computational domain, apart from one where
the condition A = 0 is imposed. It should be noted
that having ∂nA = 0 on the entire frontier of the
computational domain would be incompatible with
equation (9), since it would lead to the impossible
result

∫
V

j dV = 0, as can be readily verified by apply-
ing the divergence theorem to ∇Ax and ∇Ay. Such
approximated formulation of the boundary conditions
is the one we adopted in this work, as it can be
straightforwardly implemented in ANSYS Fluent and,
for HVCB applications, leads to an acceptable accu-
racy compared to that obtained by applying the exact
boundary condition (10). It should be noted that no
assumptions about symmetry have been made in the
modeling of the MVP.

2.1.3. 2D–axi BS formulation
The assumption of rotational symmetry allows the arc
and associated flow to be solved with a 2D–axi model.
The computational domain for the latter is any of the
planes passing through the axis of symmetry denoted
as x axis. The y coordinate of this plane represents
the radial distance from the x axis, see Figure 1.

𝑦 

𝑦 

𝑥 

𝑆 

𝜕𝑆 

𝒏d𝑆 
𝒕d𝑙 

𝑃 

Figure 1. 2D–axi model. The directions of the unit
vectors t and n are linked by the right-hand rule.

By taking the curl of (10) one obtains the BS law,
which allows to compute the magnetic field knowing
the current distribution that has generated it. Under
the axisymmetry hypothesis, the magnetic field has
only the azimuthal component and the BS law reduces
to a simple expression. The latter can be readily
derived with reference to Figure 1, by writing the
Stokes’ theorem for the vector B applied to the dashed
circular loop of radius y, lying on a plane normal to
the x axis:∫

∂S

B · t dl = 2πyB(x, y) = µ0

∫
S

j · n dS (11)

in which equation (7) has been used. The function
B(x, y) represents the azimuthal component of the

magnetic field at the point P of axial coordinate x and
radial coordinate y, while S is any surface having as
boundary the dashed circumference passing through P .
By choosing as a surface S, the circle bounded by
said circumference, equation (11) can be expanded as
2πyB = µ0

∫ y

0 jx2πy′dy′, which differentiated yields

∂y(yB) = µ0yjx. (12)

This equation expresses the BS formulation for 2D–axi
models and it is solved with the boundary condition
(11) on all the external edges of the computational
domain. As can be seen, the axisymmetric BS formu-
lation results in one equation less compared to the
model based on the MVP. Moreover, the boundary
condition (11) is much easier to implement than (10).

3. The numerical model
ANSYS Fluent offers the possibility of solving a
generic transport equation for the scalar ϕ, called
user defined scalar (UDS) equation [10], having the
following form

∂t(ρϕ) + ∇·(ψψψϕ) = ∇·(Γ∇ϕ) + Sϕ. (13)
In this equation, the vector field ψψψ that appears in the
advection term must be divergence free and it is, by
default, set to ψψψ = ρU . Two types of boundary condi-
tions are permitted for the UDS equation: “specified
value” and “specified flux”. The former is a boundary
condition of Dirichlet type that allows to set the value
of the ϕ on the boundary. The latter is a special
type of boundary condition that consists of setting
the value of the flux Fϕ = (−ψψψϕ + Γ∇ϕ) · n on the
boundary, where n is the unit normal vector pointing
into the domain. In absence of convective term, this
flux reduces to Fϕ = Γ∂nϕ and the “specified flux”
becomes a boundary condition of Neumann type.

3.1. Numerical models of the magnetostatics
The magnetostatic models described in Section 2.1
have been numerically implemented in ANSYS Flu-
ent 2020 R2. The details of this implementation are
provided below.

3.1.1. Current conservation implementation
The steady version of (13) with no advection nor
source term is used for solving (8), by setting ϕ = φ
and Γ = σ. The boundary conditions, as anticipated
in Section 2.1, are specified value φ = 0 at the ground
contact and specified value φ = c1(t) at the energized
contact, where c1(t) is determined as described in
Section 2.1. On all the other outer boundaries the
specified flux boundary condition Fϕ = 0 is applied.

3.1.2. 2D–axi MVP implementation
The axial and radial projections of the vector equation
(9) can be integrated with the 2D–axi solver of ANSYS
Fluent, using the steady version of (13) without advec-
tion term. Specifically, the UDS equation for the axial
projection of (9) is solved with ϕ = Ax, Γ = 1, and
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Sϕ = µ0jx, while the UDS equation for the radial pro-
jection is solved with ϕ = Ay, Γ = 1, and Sϕ = µ0jy.
As for the boundary conditions, in the numerical case
presented below, they are for both equations: specified
value φ = 0 on the farthest outer edge of the modeled
geometry and specified flux Fϕ = 0 on all the other
outer edges.

3.1.3. 2D–axi BS implementation
The BS law under the hypothesis of rotational symme-
try yields equation (12) for computing the magnetic
field. By dividing both sides of the latter by y, one
gets an equation that can be solved with the 2D–axi
solver of ANSYS Fluent, using the steady version of
(13) without diffusion term. If ey designates the unit
vector along the y axis, it can be noted that choosing
ψψψ = ey/y results in ∇·ψψψ = 0, which is the requirement
that the must be fulfilled by the UDS advection term.
Moreover, recalling the expression of the nabla op-
erator in cylindrical coordinates, the advection term
can be expanded as ∇· (ψψψϕ) = ψψψ ·∇ϕ = (1/y) ∂yϕ.
The setup of the UDS formulation of (12) is then
completed by letting ϕ = yB and Sϕ = µ0jx. The
boundary condition is of specified value type and it is
expressed by (11) on all the outer edges of the domain.

3.2. Results of a validation case
Simulations have been performed to reproduce the
pressure as a function of time measured in an experi-
ment conducted at our High-Voltage Laboratory. In
the test, operated in ambient air, an arc is ignited
by exploding wire inside the cylindrical throat of a
PTFE tube, between two plug electrodes. Due to the
strong evaporation the arc burns in a gaseous mixture
composed almost entirely of PTFE vapor. The exper-
imental mockup exhibits rotational symmetry and its
cross-section with a plane passing through the axis of
symmetry is depicted in Figure 2 along with the main
dimensions. The pressure is measured at the point S1
located in the middle of the tube throat.
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Figure 2. 2D–axi computational domain.

The figure also illustrates the extent of the compu-
tational domain for the 2D–axi simulations. At the
pressure outlets the ambient pressure is prescribed.
The computational grid was predominantly structured.
For the simulation with the BS model only the the
fluid domain was meshed, while in the case of the
MVP model the electrodes and polymeric tube were
also meshed. The spatial resolution and the time
stepping were selected in order to ensure a properly
converged solution. Figure 3 shows the pressure distri-
bution obtained with the arc simulation tool featuring

the BS formulation detailed above. The contour plot
refers to the time when the current attains its peak
value.

Figure 3. Pressure distribution at current peak for the
2D–axi BS implementation.

In Figure 4 the pressures at the sensor location
simulated with both BS and VP models are reported
along with the measured pressure and the current
used in the arcing operation. As can be seen, both
methods for computing the magnetic field yield almost
the same pressure, with a relative difference smaller
than 1%. Moreover, the simulated pressures exhibit a
good agreement with the measured one.
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Figure 4. Simulated vs. measured pressures at S1.

As for the importance of magnetic effects for this
validation case, at current peak the pressure computed
without magnetic field at S1 is 11.6% higher than that
obtained when Lorentz forces are included.

4. Conclusions
This work deals with the modeling of the magnetic
field in an arc simulation tool based on a commercial
flow solver (ANSYS Fluent). It is shown that the
differential form of the axisymmetric Biot-Savart law
is suited to be represented by the generic transport
equation available in the commercial software, while
its integral form provides the corresponding bound-
ary condition. The arc simulation tool is applied to
reproduce numerically the pressure measured in an
experiment in which a rotationally symmetric plasma
arc was established. The numerical reproductions
are performed with a two–dimensional axisymmetric
flow solver, using both the Biot-Savart model and
the Ampère’s law formulated in terms of magnetic
vector potential. The former model despite being less
computationally expensive yields a simulated pressure
nearly identical to that of the latter model and in
good agreement with the measured signal.
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