Research on Discharge Characteristics in Ultra-high Pressure Gases (Supercritical Fluids): A Brief Review

Authors

  • K. Niayesh Department of Electric Energy, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

DOI:

https://doi.org/10.14311/ppt.2023.2.112

Keywords:

ultra high pressure, supercritical fluid, arc discharge, current interruption

Abstract

This paper provides a review of the research on discharge characteristics in ultra high pressure gases (supercritical fluids) and discusses different applications in various fields. Followed by a summary on the investigations performed on the application of supercritical fluids for power switching purposes. A brief overview of the open research questions related to characterization of ultra high pressure switching arcs concludes the paper.

References

D. R. Young. Electric breakdown in CO2 from low pressures to the liquid state. Journal of Applied Physics, 21(3):222–231, 1950. doi:10.1063/1.1699638.

H. Bluhm. Pulsed power systems: principles and applications. Pulsed Power Systems: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2006.

M. Seeger, P. Stoller, and A. Garyfallos. Breakdown fields in synthetic air, CO2, a CO2/O2 mixture, and CF4 in the pressure range 0.5–10 MPa. IEEE Transactions on Dielectrics and Electrical Insulation, 24(3):1582–1591, 2017. doi:10.1109/TDEI.2017.006517.

J. Zhang, B. van Heesch, F. Beckers, et al. Breakdown voltage and recovery rate estimation of a supercritical nitrogen plasma switch. IEEE Transactions on Plasma Science, 42(2):376–383, 2014. doi:10.1109/TPS.2013.2294756.

Z. Yang, S. Hosseini, T. Kiyan, et al. Post-breakdown dielectric recovery characteristics of high-pressure liquid CO2 including supercritical phase. IEEE Transactions on Dielectrics and Electrical Insulation, 21(3):1089–1094, 2014. doi:10.1109/TDEI.2014.6832252.

I. Abdulagatov and P. Skripov. Thermodynamic and transport properties of supercritical fluids. part 2: Review of transport properties. Russian Journal of Physical Chemistry B, 15(7):1171–1188, 2021. doi:10.1134/S1990793121070022.

A. Michels, J. Sengers, and P. Van der Gulik. The thermal conductivity of carbon dioxide in the critical region: II. measurements and conclusions. Physica, 28(12):1216–1237, 1962. doi:10.1016/0031-8914(62)90135-0.

S. Kiselev and V. Kulikov. Thermodynamic and transport properties of fluids and fluid mixtures in the extended critical region. International Journal of Thermophysics, 18:1143–1182, 1997. doi:10.1007/BF02575254.

J. Zhang. Supercritical fluids for high power switching. PhD thesis, Technische Universiteit Eindhoven, 2015.

T. Ihara, T. Furusato, S. Kameda, et al. Initiation mechanism of a positive streamer in pressurized carbon dioxide up to liquid and supercritical phases with nanosecond pulsed voltages. Journal of Physics D: Applied Physics, 45(7):075204, 2012. doi:10.1088/0022-3727/45/7/075204.

E. H. Lock, A. V. Saveliev, and L. A. Kennedy. Initiation of pulsed corona discharge under supercritical conditions. IEEE Transactions on Plasma Science, 33(2):850–853, 2005. doi:10.1109/TPS.2005.845302.

F. Abid. Characteristics of Switching Arc in Ultrahigh-pressure Nitrogen. PhD thesis, Norwegian University of Science and Technology, 2020.

F. Abid, K. Niayesh, E. Jonsson, et al. Arc voltage characteristics in ultrahigh-pressure nitrogen including supercritical region. IEEE Transactions on Plasma Science, 46(1):187–193, 2017. doi:10.1109/TPS.2017.2778800.

F. Abid, K. Niayesh, and N. S. Støa-Aanensen. Ultrahigh-pressure nitrogen arcs burning inside cylindrical tubes. IEEE Transactions on Plasma Science, 47(1):754–761, 2018. doi:10.1109/TPS.2018.2880841.

F. Abid, K. Niayesh, C. Espedal, and N. Støa-Aanensen. Current interruption performance of ultrahigh-pressure nitrogen arc. Journal of Physics D: Applied Physics, 53(18):185503, 2020. doi:10.1088/1361-6463/ab7352.

F. Abid, K. Niayesh, E. Viken, et al. Effect of filling pressure on post-arc gap recovery of N2. IEEE Transactions on Dielectrics and Electrical Insulation, 27(4):1339–1347, 2020. doi:10.1109/TDEI.2020.008844.

F. Abid, K. Niayesh, and N. S. Støa-Aanensen. Nozzle wear and pressure rise in heating volume of self-blast type ultra-high pressure nitrogen arc. Plasma Physics and Technology, 6(1):23–26, 2019. doi:10.14311/ppt.2019.1.23.

N. Støa-Aanensen, C. Espedal, O. Rokseth, et al. Arc extinction with nitrogen at 1-40 bar in a puffer-like contact configuration. Plasma Physics and Technology, 8(1):14–18, 2021. doi:10.14311/ppt.2021.1.14.

G. Speckhofer and H.-P. Schmidt. Experimental and theoretical investigation of high-pressure arcs. II. the magnetically deflected arc (three-dimensional modeling). IEEE Transactions on Plasma Science, 24(4):1239–1248, 1996. doi:10.1109/27.536571.

H.-P. Schmidt and G. Speckhofer. Experimental and theoretical investigation of high-pressure arcs. I. the cylindrical arc column (two-dimensional modeling). IEEE Transactions on Plasma Science, 24(4):1229–1238, 1996. doi:10.1109/27.536570.

E. Ibáñez, J. Mendiola, and M. Castro-Puyana. Supercritical fluid extraction. In B. Caballero, P. M. Finglas, and F. Toldrá, editors, Encyclopedia of Food and Health, pages 227–233. Academic Press, Oxford, 2016. ISBN 978-0-12-384953-3. doi:10.1016/B978-0-12-384947-2.00675-9.

Z. Li, W. Bian, L. Jiang, et al. Supercritical carbon dioxide turbine design and arrangement optimization. Frontiers in Energy Research, 10:891, 2022. doi:10.3389/fenrg.2022.922542.

S. Stauss, H. Muneoka, K. Urabe, and K. Terashima. Review of electric discharge microplasmas generated in highly fluctuating fluids: characteristics and application to nanomaterials synthesis. Physics of Plasmas, 22(5):057103, 2015. doi:10.1063/1.4921145.

I. Adamovich, S. Agarwal, E. Ahedo, et al. The 2022 plasma roadmap: low temperature plasma science and technology. Journal of Physics D: Applied Physics, 55(37):373001, 2022. doi:10.1088/1361-6463/ac5e1c.

C.-H. Shon, K.-D. Song, Y.-H. Oh, and H.-S. Oh. Investigation of the supercritical fluids as an insulating medium for high speed switching. Journal of Electrical Engineering & Technology, 11(6):1783–1786, 2016. doi:10.5370/JEET.2016.11.6.1783.

B. L. Johnson, H. C. Doepken, and J. G. Trump. Operating parameters of compressed-gas-insulated transmission lines. IEEE Transactions on Power Apparatus and Systems, PAS-88(4):369–375, 1969. doi:10.1109/TPAS.1969.292457.

J. Zhang, E. van Heesch, F. Beckers, et al. Breakdown strength and dielectric recovery in a high pressure supercritical nitrogen switch. IEEE Transactions on Dielectrics and Electrical Insulation, 22(4):1823–1832, 2015. doi:10.1109/TDEI.2015.005013.

T. Furusato, N. Ashizuka, T. Kamagahara, et al. Anomalous plasma temperature at supercritical phase of pressurized CO2 after pulsed breakdown followed by large short-circuit current. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5):1807–1813, 2018. doi:10.1109/TDEI.2018.007213.

T. Kiyan, T. Ihara, S. Kameda, et al. Weibull statistical analysis of pulsed breakdown voltages in high-pressure carbon dioxide including supercritical phase. IEEE Transactions on Plasma Science, 39(8):1729–1735, 2011. doi:10.1109/TPS.2011.2159135.

F. Haque, J. Wei, L. Graber, and C. Park. Modeling the dielectric strength variation of supercritical fluids driven by cluster formation near critical point. Physics of Fluids, 32(7):077101, 2020. doi:10.1063/5.0008848.

J. Wei, C. Park, and L. Graber. Breakdown characteristics of carbon dioxide–ethane azeotropic mixtures near the critical point. Physics of Fluids, 32(5):053305, 2020. doi:10.1063/5.0004030.

J. Wei, A. Cruz, F. Haque, et al. Investigation of the dielectric strength of supercritical carbon dioxide–trifluoroiodomethane fluid mixtures. Physics of Fluids, 32(10):103309, 2020. doi:10.1063/5.0024384.

J. Liu, Q. Zhang, J. Yan, et al. Analysis of the characteristics of dc nozzle arcs in air and guidance for the search of sf6 replacement gas. Journal of Physics D: Applied Physics, 49(43):435201, 2016. doi:10.1088/0022-3727/49/43/435201.

A. B. Murphy and E. Tam. Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. Journal of Physics D: Applied Physics, 47(29):295202, 2014. doi:10.1088/0022-3727/47/29/295202.

P. J. Bobbitt and J. S. Lee. Transport properties at high temperatures of CO2–N2–O2–Ar gas mixtures for planetary entry applications. Technical report, NASA, 1969.

M. Capitelli, G. Colonna, and A. D’angola. Thermodynamic properties and transport coefficients of high-temperature air plasma. In PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251), volume 1, pages 694–697. IEEE, 2001. doi:10.1109/PPPS.2001.1002190.

V. Babrauskas. Electric arc explosions—a review. Fire safety journal, 89:7–15, 2017. doi:10.1016/j.firesaf.2017.02.006.

A. Kadivar, K. Niayesh, N. S. Støa-Aanensen, and F. Abid. Metal vapor content of an electric arc initiated by exploding wire in a model N2 circuit breaker: Simulation and experiment. Journal of Physics D: Applied Physics, 54(5):055203, 2020. doi:10.1088/1361-6463/abba92.

L. Graber, M. M. Steurer, M. Saeedifard, et al. Efficient dc interrupter with surge protection (EDISON). In Direct Current Fault Protection: Basic Concepts and Technology Advances, pages 265–280. Springer, 2023. doi:10.1007/978-3-031-26572-3_12.

Downloads

Published

2023-08-31

Issue

Section

Review Papers