The Effect of Gas Type on Flow Characteristics in a Circuit Breaker under Cold Flow Scenario

Authors

  • Y. Qiao Centre for Smart Grid, Department of Engineering, University of Exeter, Exeter, United Kingdom
  • S. Matharage Centre for Smart Grid, Department of Engineering, University of Exeter, Exeter, United Kingdom
  • Z. Wang Centre for Smart Grid, Department of Engineering, University of Exeter, Exeter, United Kingdom

DOI:

https://doi.org/10.14311/ppt.2023.3.136

Keywords:

gas circuit breakers, supersonic flow, shock, flow separation, gas properties

Abstract

This paper presents first stage of supersonic flow modelling in gas circuit breakers without an arc. Flow characterisation focused on shock and flow separation phenomenon. Velocity deceleration caused by shock will play a significant role in determining arc cooling performance and will impact thermal interruption capability. Gas properties such as specific heat ratio, density, and viscosity influenced the flow characteristics including shock location, strength and the flow separation process.

References

H. Ito. Switching Equipment. CIGRE, Paris, France, 2019. ISBN 978-3-319-72537-6. doi:10.1007/978-3-319-72538-3.

M. S. Claessens, R. G. L. Drews, M. Holstein, and H. Lohrberg. Advanced modelling methods for circuit breakers. In CIGRE, volume 21, 2006.

M. Eves. A literature review on SF6 gas alternatives for use on the distribution network. Report, Western power distribution, 2018.

D. M. Benenson, G. Frind, R. E. Kinsinger, et al. Fundamental investigation of arc interruption in gas flows. Report, General Electric Company, 1980.

H. Gremmel. Switchgear Manual. ABB, 10th edition, 1999.

J. F. Zhang and M. T. C. Fang. Dynamic behavior of high-pressure arcs near the flow stagnation point. IEEE Transactions on Plasma Science, 17:524–533, 1989. doi:10.1109/27.32266.

J. J. Gonzalez and P. Freton. Flow behavior in high-voltage circuit breaker. IEEE Transactions on Plasma Science, 39(11):2856–2857, 2011. doi:10.1109/TPS.2011.2129538.

S. K. Park, K. Y. Park, and H. J. Choe. Flow field computation for the high voltage gas blast circuit breaker with the moving boundary. Computer Physics Communications, 177:729–737, 2007. doi:10.1016/j.cpc.2007.07.004.

Q. Zhang, J. D. Yan, and M. T. C. Fang. The modelling of an SF6 arc in a supersonic nozzle: I. cold flow features and dc arc characteristics. Journal of Physics D: Applied Physics, 47(21):215201, 2014. doi:10.1088/0022-3727/47/21/215201.

H. W. Klink, A. Marinescu, and D. Truta. Cold flow simulation of a 123 kV SF6 puffer circuit breaker. In Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipments, 1998. doi:10.1109/OPTIM.1998.710426.

P. K. Chang. Separation of Flow, book section VI – Compressible Flow Separation, pages 210–271. Pergamon, 1970. ISBN 9781483181288.

J. Mantilla, C. Franck, and M. Seeger. Measurements and simulations of cold gas flows in high voltage gas circuit breakers geometries. In Electrical Insulation, 1988., Conference Record of the 1988 IEEE International Symposium on, pages 720 – 723, 2008. doi:10.1109/ELINSL.2008.4570431.

X. Y. Ye and M. Dhotre. Cfd simulation of transonic flow in high-voltage circuit breaker. International Journal of Chemical Engineering, 2012:1–9, 2012. doi:10.1155/2012/609486.

P. K. Chang. Separation of Flow, book section VII – Characteristics of Separated Flows, pages 272–335. Pergamon, 1970. ISBN 9781483181288.

D. Serre. Handbook of Mathematical Fluid Dynamics, volume 4, book section Chapter 2 – Shock Reflection in Gas Dynamics, pages 39–122. North-Holland, 2007. ISBN 9780444528346.

Downloads

Published

2023-10-11

Issue

Section

Articles