Characterization of Ultrahigh Pressure Nitrogen Arc Using Black Box Arc Model

Authors

  • F. Abid Department of Electric Energy, Norwegian University of Science and Technology, Trondheim, Norway
  • K. Niayesh Department of Electric Energy, Norwegian University of Science and Technology, Trondheim, Norway

DOI:

https://doi.org/10.14311/ppt.2023.3.127

Keywords:

switchgear, arc discharge, time constant, cooling power, supercritical fluid

Abstract

In this paper, the effect of filling pressure on the black box arc parameters of nitrogen arc is reported using Mayr arc model. The arc current is approximately 130 A at 190 Hz. The filling pressure is varied at absolute pressure of 1, 20, and 40 bar. A phase transition from gas to supercritical state occurs when the pressure of nitrogen exceeds 33.5 bar at room temperature. To determine the effect of forced cooling, first, the free-burning arc is studied at different filling pressures. Afterwards, a self-blast arrangement is used where gas is blown into the arc near current zero. It has been observed that, without forced gas flow, both the time constant and the cooling power of the arc increase with the filling pressure. The forced cooling, however, reduces the time constant and further enhances the cooling power, thus facilitating the current interruption.

References

T. Hazel, H. H. Baerd, J. J. Legeay, and J. J. Bremnes. Taking power distribution under the sea: Design, manufacture, and assembly of a subsea electrical distribution system. IEEE Industry Applications Magazine, 19(5):58–67, 2013. doi:10.1109/MIAS.2012.2215648.

J. Zhang, A. H. Markosyan, M. Seeger, et al. Numerical and experimental investigation of dielectric recovery in supercritical N2. Plasma Sources Science and Technology, 24(2), 2015. doi:10.1088/0963-0252/24/2/025008.

Z. Guo, S. Liu, Y. Pu, et al. Study of the arc interruption performance of CO2 gas in high-voltage circuit breaker. IEEE Transactions on Plasma Science, 47(5):2742–2751, 2019. doi:10.1109/TPS.2019.2904981.

M. Seeger, M. Schwinne, R. Bini, et al. Dielectric recovery in a high-voltage circuit breaker in SF6. Journal of Physics D: Applied Physics, 45(5), 2012. doi:10.1088/0022-3727/45/39/395204.

F. Abid, K. Niayesh, E. Jonsson, et al. Arc voltage characteristics in ultrahigh-pressure nitrogen including supercritical region. IEEE Transactions on Plasma Science, 46(1):187–193, 2018. doi:10.1109/TPS.2017.2778800.

F. Abid, K. Niayesh, C. Espedal, and N. S. Støa-Aanensen. Current interruption performance of ultrahigh-pressure nitrogen arc. Journal of Physics D: Applied Physics, 53(18):185503, 2020. doi:10.1088/1361-6463/ab7352.

F. Abid, K. Niayesh, E. Viken, et al. Effect of filling pressure on post-arc gap recovery of N2. IEEE Transactions on Dielectrics and Electrical Insulation, 27(4):1339–1347, 2020. doi:10.1109/TDEI.2020.008844.

A. Kadivar, K. Niayesh, N. S. Støa-Aanensen, and F. Abid. Metal vapor content of an electric arc initiated by exploding wire in a model n2 circuit breaker: Simulation and experiment. Journal of Physics D: Applied Physics, 54(5), 2012. doi:10.1088/1361-6463/abba92.

J. L. Guardado, S. G. Maximov, E. Melgoza, et al. An improved arc model before current zero based on the combined mayr and cassie arc models. IEEE Transactions on Power Delivery, 20(1), 2005. doi:10.1109/TPWRD.2004.837814.

A. Khakpour, S. Franke, S. Gortschakow, et al. An improved arc model based on the arc diameter. IEEE Transactions on Power Delivery, 31(3), 2016. doi:10.1109/TPWRD.2015.2473677.

Downloads

Published

2023-09-05

Issue

Section

Articles