Electrical models of arcs in different applications

Authors

  • D. Uhrlandt Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • A. Najam Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • G. Gott Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • R. Methling Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • M. Baeva Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • S. Gortschakow Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
  • D. Gonzalez Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany

DOI:

https://doi.org/10.14311/

Keywords:

electric arc model, switching arc, welding arc, vacuum arc

Abstract

The electrical characteristic of arcs sensitively depends on many factors like electrode material and shape, working gas and gas pressure. Arc sheath voltages and electrode resistance have to be considered in particular for shorter arcs. The arc voltage behaviour is important to the switching performance. But its knowledge also allows to estimate the power consumption of the arc and the heat transferred to the electrodes. Arc voltage models are easy to integrate in power grid simulations and benefitial for the design of arc power sources. Whereas specific arc voltage models are available meanwhile for many examples, there are still knowledge gaps for arcs in a wide range of parameters. This paper provides a review of recently developed electric arc models for high and low voltage switching as well as for welding with the focus on vacuum arcs, short arcs and arcs at low current.

References

O. Mayr. Beiträge zur Theorie des Statischen und des Dynamischen Lichtbogens. Arch. Elektr., 37:588–608, 1943.

A. Cassie. Arc rupture and circuit severity: A new theory. In Proceedings of the Conférence Internationale des Grands Réseaux Électriques à Haute Tension (CIGRE Report), Paris, France, 102:1–14, 1939.

J. Schwarz. Dynamisches Verhalten eines gasbeblasenen, turbulenzbestimmten Schaltlichtbogens. ETZ Arch., 92:389–391, 1971.

P. Schavemaker and L. van der Slui. An improved Mayr-type arc model based on current-zero measurements. IEEE Trans. Power Deliv., 15:580–584, 2000. doi:10.1109/61.852988.

H. Ayrton. The Electric Arc. Cambridge University Press: Cambridge, UK, 2012. ISBN 978-1-108-05268-9.

C. Steinmetz. Electric power into light, Section VI. The arc. Trans. Am. Inst. Electr. Eng., 25:802, 1906.

W. Nottingham. A new equation for the static characteristic of the normal electric arc. Trans. Am. Inst. Electr. Eng., 42:12–19, 1923.

R. Smeets and V. V.Kertesr. Evaluation of high-voltage circuit breaker performance with a validated arc model. IEE Proc.-Gener. Transm. Distrib., 147:121–125, 2000. doi:10.1049/ip-gtd:20000238.

N. Gustavsson. Evaluation and simulation of black-box arc models for high-voltage circuit-breakers, Linköping 2004. arXiv: http://www.ep.liu.se/exjobb/isy/2004/3492/.

R. Ammerman, T. Gammon, P. Sen, and J. Nelson. DC-arc models and incident-energy calculations. IEEETrans. Ind. Appl., 46:1810–1819, 2010. doi:10.1109/TIA.2010.2057497.

A. Khakpour, S. Franke, R. Methling, et al. An improved arc model for vacuum arc regarding anode spot modes. IEEE Trans. Dielectr. and Electr. Insul., 26:120–128, 2019. doi:10.1109/TDEI.2018.007587.

H. Fink, D. Gentsch, M. Heimbach, et al. New developments of vacuum interrupters based on rmf and amf technologies. Proceedings ISDEIV. 18th International Symposium on Discharges and Electrical Insulation in Vacuum, 2:463–466, 1998. doi:10.1109/DEIV.1998.738633.

A. Khakpour, S. Franke, D. Uhrlandt, et al. Electrical arc model based on physical parameters and power calculation. IEEE Trans. Plasma Sci., 43(8):2721–2729, 2015. doi:10.1109/TPS.2015.2450359.

S. St Franke, R. Methling, D. Uhrlandt, et al. Temperature determination in copper-dominated free-burning arcs. J. Phys. D: Appl. Phys., 47:015202, 2014. doi:10.1088/0022-3727/47/1/015202.

A. Khakpour, S. Franke, S. Gortschakow, et al. An improved arc model based on the arc diameter,. IEEE Trans. Power Del., 31:1335–1341, 2016. doi:10.1109/TPWRD.2015.2473677.

P. Gueye, Y. Cressault, V. Rohanio, and L. Fulcheri. A simplified model for the determination of current-voltage characteristics of a high pressure hydrogen plasma arc. J. Appl. Phys., 121:073302, 2017. doi:10.1063/1.4976572.

R. Kozakov, G. Gött, H. Schöpp, et al. Spatial structure of the arc in a pulsed GMAW process. J. Phys. D: Appl. Phys., 46:224001, 2013. doi:10.1088/0022-3727/46/22/224001.

G. Zhang, G. Gött, R. Kozakov, et al. Study of the wire resistance in gas metal arc welding. J. Phys. D: Appl. Phys., 52:085201, 2019. doi:10.1088/1361-6463/aaf5bb.

G. Zhang, G. Gött, R. Kozakov, et al. Study of the arc voltage in gas metal arc welding. J. Phys. D: Appl. Phys., 52:085202, 2019. doi:10.1088/1361-6463/aaf588.

G. Zhang, G. Gött, D. Uhrlandt, et al. A simplified voltage model in GMAW. Weld. World, pages 1625 –1634, 2020. doi:10.1007/s40194-020-00943-x.

G. Zhang, G. Gött, and D. Uhrlandt. Study of the anode energy in gas metal arc welding. J. Phys. D: Appl. Phys., 53:395202, 2020. doi:10.1088/1361-6463/ab93f7.

A. Najam, P. Pieterse, and D. Uhrlandt. Electrical modelling of switching arcs in a low voltage relay at low currents. Energies, 13:6377, 2020. doi:10.3390/en13236377.

M. S. Benilov and A. Marotta. A model of the cathode region of atmospheric pressure arcs. J. Phys. D: Appl. Phys., 28:1869, 1995. doi:10.1088/0022-3727/28/9/015.

M. Baeva, V. F. Boretskij, D. Gonzalez, et al. Unified modelling of low-current short-length arcs between copper electrodes,. J. Phys. D: Appl. Phys., 54:025203, 2021. doi:10.1088/1361-6463/abba5d.

A. Najam, R. Methling, J. Hummel, et al. Electrical and optical investigation of an electric arc in hydrogen for short gaps. Plasma Phys. Technol., 10(2):73–76, 2023. doi:10,14311/ppt.2023.2.73.

D. Gonzalez, S. Gortschakow, R. Methling, et al. Switching behavior of a gas-filled model DC-contactor under different conditions. IEEE Trans. Plasma Sci., 48(7):2515–2522, 2020. doi:10.1109/TPS.2020.3003525.

Downloads

Published

2024-05-29

Issue

Section

Review Papers