Modelling of gasification of organic waste in thermal-plasma chemical reactors


  • J. Jenista Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
  • I. Hirka formely with IPP
  • O. Zivny Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic



feeding rate, gasification, plasma torch, sewage sludge


The paper presents the latest numerical simulations of gasification of wood particles and sewage sludge in two different thermal-plasma chemical reactors using either a unique DC-plasma torch stabilized by argon and water vortex or DC-plasma air torches. Numerical results of gasification and syngas production from crushed wood show that high syngas content (∼90%) was achieved for all studied currents (400–600 A) and wood particle diameters (0.2 mm – 20 mm). The CO and H2 molar fractions for three different particle diameters for 400 A obtained by modelling at the exhaust outlet are in reasonably good agreement with the experimental values (CO–0.6, H2–0.3). The gasification of sewage sludge by air plasma torches generate syngas of a lower quality (∼42%) due to a high nitrogen
content in air.


T. Y. Ahmed, M. M. Ahmad, S. Yusup, et al. Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review. Renewable and Sustainable Energy Reviews, 16(4):2304–2315, 2012. doi:10.1016/j.rser.2012.01.035.

R. I. Singh, A. Brink, and M. Hupa. CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52(2):585–614, 2013. doi:10.1016/j.applthermaleng.2012.12.017.

Q. Xue and R. Fox. Multi-fluid cfd modeling of biomass gasification in polydisperse fluidized-bed gasifiers. Powder Technology, 254:187–198, 2014. doi:10.1016/j.powtec.2014.01.025.

S. Martínez-Lera and J. Pallarés Ranz. On the development of a polyolefin gasification modelling approach. Fuel, 197:518–527, 2017. doi:10.1016/j.fuel.2017.02.032.

Werle and Sebastian. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Management & Research, 32(10):954–960, 2014. PMID: 24938298. doi:10.1177/0734242X14535654.

P. Ziółkowski, J. Badur, H. Pawlak- Kruczek, et al. Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant. Energy, 244:122601, 2022. doi:10.1016/

M. Hrabovsky, M. Konrad, V. Kopecky, et al. Gasification of biomass in water/gas–stabilized plasma for syngas production. Czech J Phys, 56 (Suppl 2):B1199–B1206, 2006. doi:10.1007/s10582-006-0350-9.

M. Hlina, M. Hrabovsky, T. Kavka, and M. Konrad. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management, 34(1):63–66, 2014. doi:10.1016/j.wasman.2013.09.018.

M. Hrabovsky, M. Konrad, V. Kopecky, et al. Pyrolysis of wood in arc plasma for syngas production. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 10(4):557–570, 2006. doi:10.1615/HighTempMatProc.v10.i4.70.

M. Hlína, M. Hrabovsky, V. Kopecký, et al. Plasma gasification of wood and production of gas with low content of tar. Czechoslovak Journal of Physics, 56:B1179–B1184, 2006. doi:10.1007/s10582-006-0347-4.

S. Janssens. Modeling of heat and mass transfer in a reactor for plasma gasification using a hybrid gas-water torch. thesis, Ghent University, Belgium, 2007.

I. Hirka and M. Hrabovsky. Three-dimensional modeling of mixing of steam plasma jet with nitrogen in thermal plasma reactor. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 14:1–9, 2009. doi:10.1615/HighTempMatProc.v14.i1-2.10.

I. Hirka, O. Živný, and M. Hrabovsky. Numerical modelling of wood gasification in thermal plasma reactor. Plasma Chemistry and Plasma Processing, 37:947–965, 2017. doi:10.1007/s11090-017-9812-z.


P. A. Vesilind. The Rosin-Rammler particle size distribution. Resource Recovery and Conservation, 5(3):275–277, 1980. doi:10.1016/0304-3967(80)90007-4.

M. Hrabovsky. Water-stabilized plasma generators. Pure and Applied Chemistry, 70(6):1157–1162, 1998. doi:10.1351/pac199870061157.

F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi:10.2514/3.12149.

S. C. R. Dennis, S. N. Singh, and D. B. Ingham. The steady flow due to a rotating sphere at low and moderate reynolds numbers. J. Fluid Mech., 101:257–279, 1980. doi:10.1017/S0022112080001656.

B. Oesterlé and T. Dinh. Experiments on the lift of a spinning sphere in a range of intermediate reynolds numbers. Experiments in Fluids, 25:16–22, 1998. doi:10.1007/s003480050203.

A. D. Gosman and E. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. J. Energy, 7(6):482–490, 1993. doi:10.2514/3.62687.

A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58:63–70, 1989. doi:10.1016/0032-5910(89)80008-7.






Review Papers