Modelling of gasification of organic waste in thermal-plasma chemical reactors
DOI:
https://doi.org/10.14311/ppt.2024.1.17Keywords:
feeding rate, gasification, plasma torch, sewage sludgeAbstract
The paper presents the latest numerical simulations of gasification of wood particles and sewage sludge in two different thermal-plasma chemical reactors using either a unique DC-plasma torch stabilized by argon and water vortex or DC-plasma air torches. Numerical results of gasification and syngas production from crushed wood show that high syngas content (∼90%) was achieved for all studied currents (400–600 A) and wood particle diameters (0.2 mm – 20 mm). The CO and H2 molar fractions for three different particle diameters for 400 A obtained by modelling at the exhaust outlet are in reasonably good agreement with the experimental values (CO–0.6, H2–0.3). The gasification of sewage sludge by air plasma torches generate syngas of a lower quality (∼42%) due to a high nitrogen
content in air.
References
T. Y. Ahmed, M. M. Ahmad, S. Yusup, et al. Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review. Renewable and Sustainable Energy Reviews, 16(4):2304–2315, 2012. doi:10.1016/j.rser.2012.01.035.
R. I. Singh, A. Brink, and M. Hupa. CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52(2):585–614, 2013. doi:10.1016/j.applthermaleng.2012.12.017.
Q. Xue and R. Fox. Multi-fluid cfd modeling of biomass gasification in polydisperse fluidized-bed gasifiers. Powder Technology, 254:187–198, 2014. doi:10.1016/j.powtec.2014.01.025.
S. Martínez-Lera and J. Pallarés Ranz. On the development of a polyolefin gasification modelling approach. Fuel, 197:518–527, 2017. doi:10.1016/j.fuel.2017.02.032.
Werle and Sebastian. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Management & Research, 32(10):954–960, 2014. PMID: 24938298. doi:10.1177/0734242X14535654.
P. Ziółkowski, J. Badur, H. Pawlak- Kruczek, et al. Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant. Energy, 244:122601, 2022. doi:10.1016/j.energy.2021.122601.
M. Hrabovsky, M. Konrad, V. Kopecky, et al. Gasification of biomass in water/gas–stabilized plasma for syngas production. Czech J Phys, 56 (Suppl 2):B1199–B1206, 2006. doi:10.1007/s10582-006-0350-9.
M. Hlina, M. Hrabovsky, T. Kavka, and M. Konrad. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management, 34(1):63–66, 2014. doi:10.1016/j.wasman.2013.09.018.
M. Hrabovsky, M. Konrad, V. Kopecky, et al. Pyrolysis of wood in arc plasma for syngas production. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 10(4):557–570, 2006. doi:10.1615/HighTempMatProc.v10.i4.70.
M. Hlína, M. Hrabovsky, V. Kopecký, et al. Plasma gasification of wood and production of gas with low content of tar. Czechoslovak Journal of Physics, 56:B1179–B1184, 2006. doi:10.1007/s10582-006-0347-4.
S. Janssens. Modeling of heat and mass transfer in a reactor for plasma gasification using a hybrid gas-water torch. M.sc. thesis, Ghent University, Belgium, 2007.
I. Hirka and M. Hrabovsky. Three-dimensional modeling of mixing of steam plasma jet with nitrogen in thermal plasma reactor. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 14:1–9, 2009. doi:10.1615/HighTempMatProc.v14.i1-2.10.
I. Hirka, O. Živný, and M. Hrabovsky. Numerical modelling of wood gasification in thermal plasma reactor. Plasma Chemistry and Plasma Processing, 37:947–965, 2017. doi:10.1007/s11090-017-9812-z.
ANSYS FLUENT 2022 R1. URL: https://www.ansys.com.
P. A. Vesilind. The Rosin-Rammler particle size distribution. Resource Recovery and Conservation, 5(3):275–277, 1980. doi:10.1016/0304-3967(80)90007-4.
M. Hrabovsky. Water-stabilized plasma generators. Pure and Applied Chemistry, 70(6):1157–1162, 1998. doi:10.1351/pac199870061157.
F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi:10.2514/3.12149.
S. C. R. Dennis, S. N. Singh, and D. B. Ingham. The steady flow due to a rotating sphere at low and moderate reynolds numbers. J. Fluid Mech., 101:257–279, 1980. doi:10.1017/S0022112080001656.
B. Oesterlé and T. Dinh. Experiments on the lift of a spinning sphere in a range of intermediate reynolds numbers. Experiments in Fluids, 25:16–22, 1998. doi:10.1007/s003480050203.
A. D. Gosman and E. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. J. Energy, 7(6):482–490, 1993. doi:10.2514/3.62687.
A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58:63–70, 1989. doi:10.1016/0032-5910(89)80008-7.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 J. Jenista, I. Hirka, O. Zivny

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).