Modelling of gasification of organic waste in thermal-plasma chemical reactors

Authors

  • J. Jenista Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
  • I. Hirka formely with IPP
  • O. Zivny Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic

DOI:

https://doi.org/10.14311/ppt.2024.1.17

Keywords:

feeding rate, gasification, plasma torch, sewage sludge

Abstract

The paper presents the latest numerical simulations of gasification of wood particles and sewage sludge in two different thermal-plasma chemical reactors using either a unique DC-plasma torch stabilized by argon and water vortex or DC-plasma air torches. Numerical results of gasification and syngas production from crushed wood show that high syngas content (∼90%) was achieved for all studied currents (400–600 A) and wood particle diameters (0.2 mm – 20 mm). The CO and H2 molar fractions for three different particle diameters for 400 A obtained by modelling at the exhaust outlet are in reasonably good agreement with the experimental values (CO–0.6, H2–0.3). The gasification of sewage sludge by air plasma torches generate syngas of a lower quality (∼42%) due to a high nitrogen
content in air.

References

T. Y. Ahmed, M. M. Ahmad, S. Yusup, et al. Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review. Renewable and Sustainable Energy Reviews, 16(4):2304–2315, 2012. doi:10.1016/j.rser.2012.01.035.

R. I. Singh, A. Brink, and M. Hupa. CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52(2):585–614, 2013. doi:10.1016/j.applthermaleng.2012.12.017.

Q. Xue and R. Fox. Multi-fluid cfd modeling of biomass gasification in polydisperse fluidized-bed gasifiers. Powder Technology, 254:187–198, 2014. doi:10.1016/j.powtec.2014.01.025.

S. Martínez-Lera and J. Pallarés Ranz. On the development of a polyolefin gasification modelling approach. Fuel, 197:518–527, 2017. doi:10.1016/j.fuel.2017.02.032.

Werle and Sebastian. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Management & Research, 32(10):954–960, 2014. PMID: 24938298. doi:10.1177/0734242X14535654.

P. Ziółkowski, J. Badur, H. Pawlak- Kruczek, et al. Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant. Energy, 244:122601, 2022. doi:10.1016/j.energy.2021.122601.

M. Hrabovsky, M. Konrad, V. Kopecky, et al. Gasification of biomass in water/gas–stabilized plasma for syngas production. Czech J Phys, 56 (Suppl 2):B1199–B1206, 2006. doi:10.1007/s10582-006-0350-9.

M. Hlina, M. Hrabovsky, T. Kavka, and M. Konrad. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management, 34(1):63–66, 2014. doi:10.1016/j.wasman.2013.09.018.

M. Hrabovsky, M. Konrad, V. Kopecky, et al. Pyrolysis of wood in arc plasma for syngas production. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 10(4):557–570, 2006. doi:10.1615/HighTempMatProc.v10.i4.70.

M. Hlína, M. Hrabovsky, V. Kopecký, et al. Plasma gasification of wood and production of gas with low content of tar. Czechoslovak Journal of Physics, 56:B1179–B1184, 2006. doi:10.1007/s10582-006-0347-4.

S. Janssens. Modeling of heat and mass transfer in a reactor for plasma gasification using a hybrid gas-water torch. M.sc. thesis, Ghent University, Belgium, 2007.

I. Hirka and M. Hrabovsky. Three-dimensional modeling of mixing of steam plasma jet with nitrogen in thermal plasma reactor. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 14:1–9, 2009. doi:10.1615/HighTempMatProc.v14.i1-2.10.

I. Hirka, O. Živný, and M. Hrabovsky. Numerical modelling of wood gasification in thermal plasma reactor. Plasma Chemistry and Plasma Processing, 37:947–965, 2017. doi:10.1007/s11090-017-9812-z.

ANSYS FLUENT 2022 R1. URL: https://www.ansys.com.

P. A. Vesilind. The Rosin-Rammler particle size distribution. Resource Recovery and Conservation, 5(3):275–277, 1980. doi:10.1016/0304-3967(80)90007-4.

M. Hrabovsky. Water-stabilized plasma generators. Pure and Applied Chemistry, 70(6):1157–1162, 1998. doi:10.1351/pac199870061157.

F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi:10.2514/3.12149.

S. C. R. Dennis, S. N. Singh, and D. B. Ingham. The steady flow due to a rotating sphere at low and moderate reynolds numbers. J. Fluid Mech., 101:257–279, 1980. doi:10.1017/S0022112080001656.

B. Oesterlé and T. Dinh. Experiments on the lift of a spinning sphere in a range of intermediate reynolds numbers. Experiments in Fluids, 25:16–22, 1998. doi:10.1007/s003480050203.

A. D. Gosman and E. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. J. Energy, 7(6):482–490, 1993. doi:10.2514/3.62687.

A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58:63–70, 1989. doi:10.1016/0032-5910(89)80008-7.

Downloads

Published

2024-05-29

Issue

Section

Review Papers