Enhancing Plasma Torch Efficiency: Wet Steam Cooling

Authors

  • A. Essiptchouk Department of Environment Engineering, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, 12247-004, Brazil

DOI:

https://doi.org/10.14311/ppt.2024.3.67

Keywords:

plasma torch, numerical simulation, multiphase flow, heat transfer

Abstract

The efficient use of wet steam for plasma torch cooling and water plasma generation is important for reliable plasma generator design. Wet steam, due to phase transformation capability, improves heat removal at lower gas flow rates if compared to liquid water. To evaluate the wet steam cooling potential, a numerical model is proposed, incorporating governing equations (mass, momentum, energy, current, and Ampere's law) are expressed in the cylindrical coordinate system. The model is applied to investigate the wet steam cooling feasibility for the anode of a direct current plasma torch with non-transferred arc. Electric arc modeling examines anode spot location and anode surface temperature distribution for a 120 A arc current and gas flow rates of 42, 90, and 140 l/min under steady flow conditions. Analysis of spatial vapor content distribution in the refrigeration channel highlights unfavorable conditions when wet steam becomes dry.

References

A. Sanlisoy and M. Carpinlioglu. A review on plasma gasification for solid waste disposal. Int. J. Hydrogen Energy, 42:1361–1365, 2017. doi:10.1016/j.ijhydene.2016.06.008.

E. Gomez, D. A. Rani, C. Cheeseman, et al. Thermal plasma technology for the treatment of wastes: A critical review. Journal of Hazardous Materials, 161(2):614–626, 2009. doi:10.1016/j.jhazmat.2008.04.017.

A. M. Ali, M. A. A. Hassan, and B. I. Abdulkarim. Thermal plasma: A technology for efficient treatment of industrial and wastewater sludge. J. Environ. Sci. Toxicol. Food. Technol, 10:63–75, 2016.

J. Heberlein and A. B. Murphy. Thermal plasma waste treatment. Journal of Physics D: Applied Physics, 41(5):053001, feb 2008. doi:10.1088/0022-3727/41/5/053001.

H. Nishikawa, M. Ibe, M. Tanaka, et al. A treatment of carbonaceous wastes using thermal plasma with steam. Vacuum, 73(3):589–593, 2004. The 4th International Symposium on Applied Plasma Science. doi:10.1016/j.vacuum.2003.12.074.

S. Elaissi and N. A. M. Alsaif. Modeling and performance analysis of municipal solid waste treatment in plasma torch reactor. Symmetry, 15(3), 2023. URL: https://www.mdpi.com/2073-8994/15/3/692, doi:10.3390/sym15030692.

M. Hrabovsky, M. Hlina, V. Kopecky, et al. Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem. Plasma Process., 37(3):739–762, 2017. doi:10.1007/s11090-016-9783-5.

R. F. S. Paulino, A. M. Essiptchouk, L. P. C. Costa, and J. L. Silveira. Thermodynamic analysis of biomedical waste plasma gasification. Energy, 244:122600, 2022. doi:10.1016/j.energy.2021.122600.

A. Essiptchouk, F. Miranda, and G. Petraconi. Comparative analysis of methane conversion: pyrolysis, dry and steam thermal plasma reforming. Journal of Physics D: Applied Physics, 57(24):245201, mar 2024. doi:10.1088/1361-6463/ad31e7.

Hrabovsky. Water-stabilized plasma generators. Pure and applied chemistry, 70(6):1157–1162, 1998.

J. Jeništa, H. Takana, H. Nishiyama, et al. Integrated parametric study of a hybrid-stabilized argon–water arc under subsonic, transonic and supersonic plasma flow regimes. Journal of Physics D: Applied Physics, 44(43):435204, nov 2011. doi:10.1088/0022-3727/44/43/435204.

P. G. Rutberg and et al. Study of electric arcs in an air-steam mixture in ac plasma torches. High Temperature, 51(5):608–614, 2013. doi:10.1134/S0018151X13050180.

B. Glocker, G. Nentwig, and E. Messerschmid. 1–40kw steam respectively multi gas thermal plasma torch system. Vacuum, 59(1):35–46, 2000. The Second International Symposium on Applied Plasma Science. doi:10.1016/S0042-207X(00)00252-9.

V. Grigaitiene˙ and at al. Water vapor plasma technology for biomass conversion to synthetic gas. Catalysis Today, 167(1):135–140, 2011. doi:10.1016/j.cattod.2010.12.029.

E. P. Maher I. Boulos, Pierre Fauchais. TThermal Plasmas. Springer New York, NY, 1994.

The International Association for the Properties of Water and Steam. arXiv:http://www.iapws.org/.

Downloads

Published

2024-12-03

Issue

Section

Articles